commit
This commit is contained in:
parent
31559bd368
commit
992737fc96
BIN
PS3/doc.pdf
BIN
PS3/doc.pdf
Binary file not shown.
175
PS3/doc.tex
175
PS3/doc.tex
@ -318,5 +318,180 @@ S_u = [1, s; s, 1];
|
|||||||
only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\).
|
only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\).
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\section*{Problem 3}
|
||||||
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
||||||
|
\item %3a
|
||||||
|
Given the geometry and interaction rules stated, the interaction matrices \([H]_{nm}\) are zero except for
|
||||||
|
\begin{align*}
|
||||||
|
[H]_{nn} &= \begin{bmatrix}
|
||||||
|
E_0 & t_i \\
|
||||||
|
t_i & E_0 \\
|
||||||
|
\end{bmatrix} \\
|
||||||
|
[H]_{n,m*} &= \begin{bmatrix}
|
||||||
|
t_A & 0 \\
|
||||||
|
0 & t_B \\
|
||||||
|
\end{bmatrix}
|
||||||
|
\end{align*}
|
||||||
|
where \(m*\) corresponds to any of the four nearest neighbor square-shaped unit cells to cell \(n\).
|
||||||
|
For cell \(n\), let cell \(a\) be above, cell \(b\) be to the right, cell \(c\) be below, and cell \(d\) be to the left.
|
||||||
|
Given that each cell is spaced a length \(a\) apart, the associated phase factors for nonzero \(H_{nm}\),
|
||||||
|
\(e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})}\), are then:
|
||||||
|
\begin{align*}
|
||||||
|
(n):& \quad 1 \\
|
||||||
|
(a):& \quad e^{ik_y a} \\
|
||||||
|
(b):& \quad e^{ik_x a} \\
|
||||||
|
(c):& \quad e^{-ik_y a} \\
|
||||||
|
(d):& \quad e^{-ik_x a} \\
|
||||||
|
\end{align*}
|
||||||
|
with \(\vec{k} = k_x\hat{x} + k_y\hat{y}\). The Bloch matrix then follows:
|
||||||
|
\begin{align*}
|
||||||
|
[h(\vec{k})] &= \sum_m [H]_{nm} e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})} \\
|
||||||
|
&= \begin{bmatrix}
|
||||||
|
E_0 + t_A\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) & t_i \\
|
||||||
|
t_i & E_0 + t_B\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) \\
|
||||||
|
\end{bmatrix} \\
|
||||||
|
&= \begin{bmatrix}
|
||||||
|
E_0 + 2t_A\left(\cos(k_x a) + \cos(k_y a)\right) & t_i \\
|
||||||
|
t_i & E_0 + 2t_B\left(\cos(k_x a) + \cos(k_y a)\right) \\
|
||||||
|
\end{bmatrix}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item %3b
|
||||||
|
|
||||||
|
To find the E-\textbf{k} relationship in terms of cosine functions, we must first
|
||||||
|
find \( h_0 \) in terms of trigonometric functions.
|
||||||
|
We will require the following trigonometric identities to do so:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
sin(\alpha \pm \beta) = sin(\alpha)cos(\beta) \pm sin(\beta)cos(\alpha)
|
||||||
|
\label{eq:sin_sum}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
cos(\alpha \pm \beta) = cos(\alpha)cos(\beta) \mp sin(\alpha)sin(\alpha)
|
||||||
|
\label{eq:cos_sum}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
1 = sin^2(\theta) cos^2(\theta)
|
||||||
|
\label{eq:sum_squares}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
As well as the following general sine/cosine properties:
|
||||||
|
\begin{align}
|
||||||
|
cos(\theta) &= cos(-\theta)
|
||||||
|
sin(\theta) &= -sin(-\theta)
|
||||||
|
\label{eq:neg_sin_cos}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
First we can rewrite the exponentials in \( h_0 \) using Euler's identity:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
h_0 = -t_c \left( 1 + cos(-k_x a - k_y b) + i sin(-k_x a - k_y b) + cos(-k_x a + k_y b) + i sin(-k_x a + k_y b) \right)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Using identities (\ref{eq:sin_sum}) and (\ref{eq:cos_sum}), we can expand this relationship further.
|
||||||
|
|
||||||
|
|
||||||
|
% TODO no idea how to format this...
|
||||||
|
\begin{align*}
|
||||||
|
h_0 = -t+c ( 1 &+ cos(-k_x a)cos(-k_y b) - sin(-k_x a)sin(-k_y b) + i sin(-k_x a)cos(-k_y b) + i sin(-k_y b)cos(-k_x a) \\
|
||||||
|
&+ cos(k_y b)cos(k_x a) + sin(k_y b)sin(k_x a) + i sin(k_y b)cos(k_x a) - i sin(k_x a)cos(k_y b) )
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Here we can use the properties from (\ref{eq:neg_sin_cos}) to reduce this equation. Since \( \left| h_0 \right| ^2 = h_0 h^*_0 \),
|
||||||
|
we also obtain a simple expression for \( h^*_0 \).
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
h_0 &= -t_c ( 1 + 2cos(k_x a)cos(k_y b) - 2 i sin(k_x a)cos(k_y b)) \\
|
||||||
|
h^*_0 &= -t_c ( 1 + 2cos(k_x a)cos(k_y b) + 2 i sin(k_x a)cos(k_y b))
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
We can now find \( \left| h_0 \right| ^2 = h_0 h^*_0 \):
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
h_0 h^*_0 = 1 + 4cos(k_x a)cos(k_y b) + 4cos^2(k_y b)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
From this, we can finally obtain an expression for \( E(k) \):
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
E(k) = E_0 \pm t_c \sqrt{1 + 4cos(k_x a)cos(k_y b) 4 cos^2(k_y b)}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\section*{Problem 4}
|
||||||
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
||||||
|
\item %4a
|
||||||
|
|
||||||
|
We can substitute (from the assignment) equation (24) into equation (23):
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\sum _k i \hbar \frac{\delta}{\delta t} c_k(t) \phi_k(x) e^{-i [E(k) / \hbar] t} &= \sum _k c_k(t) \hat{H_0} \phi(x)e^{-i [E(k) \ \hbar] t} \\
|
||||||
|
&+ \sum _k c_k(t) U_s(x, t) \phi _k (x) e^ {-i [E(k) / \hbar] t}
|
||||||
|
\label{eq:phi}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
We can partially evaluate the derivative on the left hand side:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{\delta}{\delta t} c_k(t) \phi _k(t)e^{-i [E(k) / \hbar]t} = \frac{\delta c_k(t)}{\delta t} \phi _k(t)e^{-i [E(k) / \hbar]t} - \frac{i}{\hbar} c_k(t)E(k)\phi _k (x) e^{-i [E(k) / \hbar]t}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Expanding the rightmost term out into the summation, we get the expression \( \sum _k c_k(t) E(k) \phi _k(x) e^ {-i [E(k) / \hbar]t} \).
|
||||||
|
Since \( \hat{H_0} \phi _k(x) = E(k) \phi_k(x) \), we can see that this cancels out the term with \( \hat{H_0} \) in our first substition (\ref{eq:phi}),
|
||||||
|
and we get the final differential equation:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\sum_k c_k(t) U_s(x, t) \phi _k (x) e^{-i [E(k) / \hbar]t} = \sum_k i \hbar \frac{\delta c_k(t)}{\delta t} \phi_k(x) e^{-i [E(k) / \hbar] t}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item %4b
|
||||||
|
\begin{align*}
|
||||||
|
\sum_k c_k(t) \left[\int\phi_{k_f}^*(x)U_s(x,t) \phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \left[\int\phi_{k_f}^*(x)\phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} \\
|
||||||
|
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \delta_{k_f k} e^{-i[E(k)/\hbar]t} \\
|
||||||
|
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= i\hbar \frac{\partial c_k(t)}{\partial t} e^{-i[E(k)/\hbar]t} \\
|
||||||
|
\end{align*}
|
||||||
|
where \(I_{k_f k}\) is as defined in the assignment and \(\delta_{k_f k}\) is the Kronecker delta.
|
||||||
|
\item %4c
|
||||||
|
|
||||||
|
Starting with the initial equation
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\sum _k c_k(t) I_{k_f k} e ^ {-i [ E(k) / \hbar ] t } = i \hbar \frac{\delta c_{k_f}(t)}{\delta t} e ^ {-i [ E(k_f) / \hbar ] t}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Since we approximated that \( c_k = 1 \), only when \( k = k_i \), and 0 otherwise, we can simplify
|
||||||
|
the sum on the left hand side to a single element, and divide out the exponentials.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
I_{k_f k_i} e^{ i [- E(k_i) + E(k_f) / \hbar] t} = i \hbar \frac{\delta c_k(t)}{\delta t}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Defining a new symbol \( \Lambda = [E(k_f) - E(k_i)] / \hbar \), we can simplify the equation to it's final form.
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
I_{k_f k_i} e^{i \Lambda t} = i \hbar \frac{\delta c_k(t)}{\delta t}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\item %4d
|
||||||
|
\begin{align*}
|
||||||
|
\int \frac{\partial c_{k_f}(t)}{\partial t} &= \frac{1}{i\hbar} I_{k_fk_i} \int e^{i\Lambda t} \\
|
||||||
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} \frac{1}{i\Lambda} e^{i\Lambda t} + C \\
|
||||||
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \left[\frac{1}{i\Lambda} e^{i\Lambda t/2} + C e^{-i\Lambda t/2} \right]
|
||||||
|
\end{align*}
|
||||||
|
Let \(C=-\frac{1}{i\Lambda}\). We then have:
|
||||||
|
\begin{align*}
|
||||||
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{1}{i\Lambda} \left[ e^{i\Lambda t/2} - e^{-i\Lambda t/2} \right] \\
|
||||||
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{\sin(\Lambda t/2)}{\Lambda/2}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item %4e
|
||||||
|
|
||||||
|
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
Loading…
Reference in New Issue
Block a user