This commit is contained in:
pkirwin 2021-04-09 15:49:45 -06:00
parent 31559bd368
commit 992737fc96
2 changed files with 175 additions and 0 deletions

Binary file not shown.

View File

@ -318,5 +318,180 @@ S_u = [1, s; s, 1];
only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\). only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\).
\end{enumerate} \end{enumerate}
\end{enumerate} \end{enumerate}
\newpage
\section*{Problem 3}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %3a
Given the geometry and interaction rules stated, the interaction matrices \([H]_{nm}\) are zero except for
\begin{align*}
[H]_{nn} &= \begin{bmatrix}
E_0 & t_i \\
t_i & E_0 \\
\end{bmatrix} \\
[H]_{n,m*} &= \begin{bmatrix}
t_A & 0 \\
0 & t_B \\
\end{bmatrix}
\end{align*}
where \(m*\) corresponds to any of the four nearest neighbor square-shaped unit cells to cell \(n\).
For cell \(n\), let cell \(a\) be above, cell \(b\) be to the right, cell \(c\) be below, and cell \(d\) be to the left.
Given that each cell is spaced a length \(a\) apart, the associated phase factors for nonzero \(H_{nm}\),
\(e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})}\), are then:
\begin{align*}
(n):& \quad 1 \\
(a):& \quad e^{ik_y a} \\
(b):& \quad e^{ik_x a} \\
(c):& \quad e^{-ik_y a} \\
(d):& \quad e^{-ik_x a} \\
\end{align*}
with \(\vec{k} = k_x\hat{x} + k_y\hat{y}\). The Bloch matrix then follows:
\begin{align*}
[h(\vec{k})] &= \sum_m [H]_{nm} e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})} \\
&= \begin{bmatrix}
E_0 + t_A\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) & t_i \\
t_i & E_0 + t_B\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) \\
\end{bmatrix} \\
&= \begin{bmatrix}
E_0 + 2t_A\left(\cos(k_x a) + \cos(k_y a)\right) & t_i \\
t_i & E_0 + 2t_B\left(\cos(k_x a) + \cos(k_y a)\right) \\
\end{bmatrix}
\end{align*}
\item %3b
To find the E-\textbf{k} relationship in terms of cosine functions, we must first
find \( h_0 \) in terms of trigonometric functions.
We will require the following trigonometric identities to do so:
\begin{align}
sin(\alpha \pm \beta) = sin(\alpha)cos(\beta) \pm sin(\beta)cos(\alpha)
\label{eq:sin_sum}
\end{align}
\begin{align}
cos(\alpha \pm \beta) = cos(\alpha)cos(\beta) \mp sin(\alpha)sin(\alpha)
\label{eq:cos_sum}
\end{align}
\begin{align}
1 = sin^2(\theta) cos^2(\theta)
\label{eq:sum_squares}
\end{align}
As well as the following general sine/cosine properties:
\begin{align}
cos(\theta) &= cos(-\theta)
sin(\theta) &= -sin(-\theta)
\label{eq:neg_sin_cos}
\end{align}
First we can rewrite the exponentials in \( h_0 \) using Euler's identity:
\begin{align*}
h_0 = -t_c \left( 1 + cos(-k_x a - k_y b) + i sin(-k_x a - k_y b) + cos(-k_x a + k_y b) + i sin(-k_x a + k_y b) \right)
\end{align*}
Using identities (\ref{eq:sin_sum}) and (\ref{eq:cos_sum}), we can expand this relationship further.
% TODO no idea how to format this...
\begin{align*}
h_0 = -t+c ( 1 &+ cos(-k_x a)cos(-k_y b) - sin(-k_x a)sin(-k_y b) + i sin(-k_x a)cos(-k_y b) + i sin(-k_y b)cos(-k_x a) \\
&+ cos(k_y b)cos(k_x a) + sin(k_y b)sin(k_x a) + i sin(k_y b)cos(k_x a) - i sin(k_x a)cos(k_y b) )
\end{align*}
Here we can use the properties from (\ref{eq:neg_sin_cos}) to reduce this equation. Since \( \left| h_0 \right| ^2 = h_0 h^*_0 \),
we also obtain a simple expression for \( h^*_0 \).
\begin{align*}
h_0 &= -t_c ( 1 + 2cos(k_x a)cos(k_y b) - 2 i sin(k_x a)cos(k_y b)) \\
h^*_0 &= -t_c ( 1 + 2cos(k_x a)cos(k_y b) + 2 i sin(k_x a)cos(k_y b))
\end{align*}
We can now find \( \left| h_0 \right| ^2 = h_0 h^*_0 \):
\begin{align*}
h_0 h^*_0 = 1 + 4cos(k_x a)cos(k_y b) + 4cos^2(k_y b)
\end{align*}
From this, we can finally obtain an expression for \( E(k) \):
\begin{align}
E(k) = E_0 \pm t_c \sqrt{1 + 4cos(k_x a)cos(k_y b) 4 cos^2(k_y b)}
\end{align}
\end{enumerate}
\section*{Problem 4}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %4a
We can substitute (from the assignment) equation (24) into equation (23):
\begin{align}
\sum _k i \hbar \frac{\delta}{\delta t} c_k(t) \phi_k(x) e^{-i [E(k) / \hbar] t} &= \sum _k c_k(t) \hat{H_0} \phi(x)e^{-i [E(k) \ \hbar] t} \\
&+ \sum _k c_k(t) U_s(x, t) \phi _k (x) e^ {-i [E(k) / \hbar] t}
\label{eq:phi}
\end{align}
We can partially evaluate the derivative on the left hand side:
\begin{align*}
\frac{\delta}{\delta t} c_k(t) \phi _k(t)e^{-i [E(k) / \hbar]t} = \frac{\delta c_k(t)}{\delta t} \phi _k(t)e^{-i [E(k) / \hbar]t} - \frac{i}{\hbar} c_k(t)E(k)\phi _k (x) e^{-i [E(k) / \hbar]t}
\end{align*}
Expanding the rightmost term out into the summation, we get the expression \( \sum _k c_k(t) E(k) \phi _k(x) e^ {-i [E(k) / \hbar]t} \).
Since \( \hat{H_0} \phi _k(x) = E(k) \phi_k(x) \), we can see that this cancels out the term with \( \hat{H_0} \) in our first substition (\ref{eq:phi}),
and we get the final differential equation:
\begin{align*}
\sum_k c_k(t) U_s(x, t) \phi _k (x) e^{-i [E(k) / \hbar]t} = \sum_k i \hbar \frac{\delta c_k(t)}{\delta t} \phi_k(x) e^{-i [E(k) / \hbar] t}
\end{align*}
\item %4b
\begin{align*}
\sum_k c_k(t) \left[\int\phi_{k_f}^*(x)U_s(x,t) \phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \left[\int\phi_{k_f}^*(x)\phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} \\
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \delta_{k_f k} e^{-i[E(k)/\hbar]t} \\
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= i\hbar \frac{\partial c_k(t)}{\partial t} e^{-i[E(k)/\hbar]t} \\
\end{align*}
where \(I_{k_f k}\) is as defined in the assignment and \(\delta_{k_f k}\) is the Kronecker delta.
\item %4c
Starting with the initial equation
\begin{align*}
\sum _k c_k(t) I_{k_f k} e ^ {-i [ E(k) / \hbar ] t } = i \hbar \frac{\delta c_{k_f}(t)}{\delta t} e ^ {-i [ E(k_f) / \hbar ] t}
\end{align*}
Since we approximated that \( c_k = 1 \), only when \( k = k_i \), and 0 otherwise, we can simplify
the sum on the left hand side to a single element, and divide out the exponentials.
\begin{align*}
I_{k_f k_i} e^{ i [- E(k_i) + E(k_f) / \hbar] t} = i \hbar \frac{\delta c_k(t)}{\delta t}
\end{align*}
Defining a new symbol \( \Lambda = [E(k_f) - E(k_i)] / \hbar \), we can simplify the equation to it's final form.
\begin{align}
I_{k_f k_i} e^{i \Lambda t} = i \hbar \frac{\delta c_k(t)}{\delta t}
\end{align}
\item %4d
\begin{align*}
\int \frac{\partial c_{k_f}(t)}{\partial t} &= \frac{1}{i\hbar} I_{k_fk_i} \int e^{i\Lambda t} \\
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} \frac{1}{i\Lambda} e^{i\Lambda t} + C \\
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \left[\frac{1}{i\Lambda} e^{i\Lambda t/2} + C e^{-i\Lambda t/2} \right]
\end{align*}
Let \(C=-\frac{1}{i\Lambda}\). We then have:
\begin{align*}
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{1}{i\Lambda} \left[ e^{i\Lambda t/2} - e^{-i\Lambda t/2} \right] \\
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{\sin(\Lambda t/2)}{\Lambda/2}.
\end{align*}
\item %4e
\end{enumerate}
\end{document} \end{document}