phil's lookover
This commit is contained in:
parent
c67f5ff72d
commit
a1d7cfd636
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
PS2/doc.aux
|
||||||
|
PS2/doc.fdb_latexmk
|
||||||
|
PS2/doc.fls
|
||||||
|
PS2/doc.log
|
||||||
|
PS2/doc.synctex.gz
|
||||||
|
PS2/doc.synctex.gz
|
BIN
PS2/doc.pdf
BIN
PS2/doc.pdf
Binary file not shown.
115
PS2/doc.tex
115
PS2/doc.tex
@ -67,7 +67,7 @@
|
|||||||
\newcommand{\angstrom}{\textup{\AA}}
|
\newcommand{\angstrom}{\textup{\AA}}
|
||||||
|
|
||||||
\title{ECE 456 - Problem Set 2}
|
\title{ECE 456 - Problem Set 2}
|
||||||
\date{2021-03-01}
|
\date{2021-03-08}
|
||||||
\author{David Lenfesty \\ lenfesty@ualberta.ca
|
\author{David Lenfesty \\ lenfesty@ualberta.ca
|
||||||
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
|
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
|
||||||
|
|
||||||
@ -292,7 +292,7 @@ legend({'Numerical','Analytical'},'Location','northwest');
|
|||||||
\adjustbox{valign=t}{
|
\adjustbox{valign=t}{
|
||||||
\includegraphics[width=0.5\textwidth]{q1cii.png}
|
\includegraphics[width=0.5\textwidth]{q1cii.png}
|
||||||
}
|
}
|
||||||
\captionof{figure}{Analytic solution to numeric system, plotted.}
|
\captionof{figure}{Comparison between analytical result and numerical result. Above \(n=50\), the results diverge substantially.}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
|
||||||
We can see here that the "predicted" numerical response matches nearly exactly the actual
|
We can see here that the "predicted" numerical response matches nearly exactly the actual
|
||||||
@ -309,9 +309,9 @@ legend({'Numerical','Analytical'},'Location','northwest');
|
|||||||
|
|
||||||
We can get our final analytical expression for $E$ by fully substituting the explicit form of $t_0$:
|
We can get our final analytical expression for $E$ by fully substituting the explicit form of $t_0$:
|
||||||
|
|
||||||
\begin{equation*}
|
\begin{equation}
|
||||||
\boxed{E = \frac{ \hbar^2 n^2 \pi^2 }{ 2 m L^2 }}
|
\boxed{E = \frac{ \hbar^2 n^2 \pi^2 }{ 2 m L^2 }.}
|
||||||
\end{equation*}
|
\end{equation}
|
||||||
|
|
||||||
\item %1civ
|
\item %1civ
|
||||||
With the decreased lattice spacing and increased number of points we can see the numerical solution
|
With the decreased lattice spacing and increased number of points we can see the numerical solution
|
||||||
@ -319,7 +319,7 @@ legend({'Numerical','Analytical'},'Location','northwest');
|
|||||||
now a constant-amplitude wave, which corresponds to the expected analytic result, in contrast to the
|
now a constant-amplitude wave, which corresponds to the expected analytic result, in contrast to the
|
||||||
plot in section (a), which has a low-frequency envelope around it.
|
plot in section (a), which has a low-frequency envelope around it.
|
||||||
|
|
||||||
\begin{minipage}[t]{\linewidth}
|
\begin{minipage}[b]{\linewidth}
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\centering
|
\centering
|
||||||
@ -385,15 +385,16 @@ H(N, 1) = -t0;
|
|||||||
\adjustbox{valign=t}{
|
\adjustbox{valign=t}{
|
||||||
\includegraphics[width=0.5\textwidth]{q1div.jpg}
|
\includegraphics[width=0.5\textwidth]{q1div.jpg}
|
||||||
}
|
}
|
||||||
\captionof{figure}{Sketch of degenerate energy levels.}
|
\captionof{figure}{Sketch of degenerate energy levels. In the sketch, closely-spaced
|
||||||
|
levels are in fact degenerate.}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
|
||||||
\item %1div
|
\item %1div
|
||||||
|
|
||||||
Plugging the valid levels for $n$ into equation (10) from the assignment (and dividing
|
Plugging the valid levels for $n$ into equation (10) from the assignment (and dividing
|
||||||
by the requisite $q$), we get energy levels of \(0\) eV, \(0.0147\) eV, and \(0.0589\) eV for the
|
by the requisite $q$), we get energy levels of \(0\) eV, \(0.0147\) eV, and \(0.0589\) eV for the
|
||||||
indices \(n=0\), \(1\), and \(2\), respectively. These match very closely, to within
|
indices \(n=0\), \(1\), and \(2\), respectively. These match within an
|
||||||
acceptable margin of the numerical results from part (ii).
|
acceptable margin to the numerical results from part (ii).
|
||||||
|
|
||||||
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
@ -528,7 +529,7 @@ axis([0 1e-9 0 0.04]);
|
|||||||
which corresponds to the analytical result for the energy being slightly greater in magnitude (\(-13.6\) eV versus \(-13.4978\) eV).
|
which corresponds to the analytical result for the energy being slightly greater in magnitude (\(-13.6\) eV versus \(-13.4978\) eV).
|
||||||
\begin{minipage}[t]{\linewidth}
|
\begin{minipage}[t]{\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]{q2f_fig.png}
|
\includegraphics[width=0.6\textwidth]{q2f_fig.png}
|
||||||
\captionof{figure}{Numerical result (black line) and analytical solution scaled by \(a\) (orange circles).}
|
\captionof{figure}{Numerical result (black line) and analytical solution scaled by \(a\) (orange circles).}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
|
||||||
@ -542,10 +543,15 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
||||||
|
|
||||||
\item %3a
|
\item %3a
|
||||||
|
Recalling the identity
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\theta (x') = \sqrt{\frac{2}{L}} sin \left( \frac{\pi (x' + L/2)}{L} \right) = \sqrt{\frac{2}{L}} cos \left( \frac{\pi x'}{L} \right)
|
\cos{u} = \sin{\left(\frac{\pi}{2} + u\right)},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
we can write
|
||||||
|
\begin{align}
|
||||||
|
\phi (x') &= \sqrt{\frac{2}{L}} \sin{ \left( \frac{\pi (x' + L/2)}{L} \right) } \nonumber \\
|
||||||
|
\phi (x') &= \boxed{\sqrt{\frac{2}{L}} \cos{\left( \frac{\pi x'}{L} \right)}.}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
\item %3b
|
\item %3b
|
||||||
|
|
||||||
@ -553,13 +559,18 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\item %3bi
|
\item %3bi
|
||||||
|
|
||||||
Mapping the provided Fourier identities from \( t \) and \( \omega \) onto
|
Mapping the provided Fourier identities from \( t \) and \( \omega \) onto
|
||||||
\(x'\) and \(k'\), we can evaluate the Fourier transform \(A(k')\):
|
\(x'\) and \(k'\), we can evaluate the Fourier transform of \(\phi(x') = \sqrt{\frac{2}{L}}\cos{\left(\frac{\pi}{L} x' \right) }\times\rect{\left(\frac{x'}{L}\right)}\), denoted \(A(k')\),
|
||||||
|
using the following:
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\mathcal{F}\left[rect(\frac{x'}{L}) \right] &= \frac{L}{\sqrt{2 \pi}} sinc \left( \frac{k' L}{2 \pi} \right) \\
|
\mathcal{F}\left[\rect{\left(\frac{x'}{L}\right)} \right] &= \frac{L}{\sqrt{2 \pi}} \sinc{ \left( \frac{k' L}{2 \pi} \right) }\\
|
||||||
\mathcal{F}\left[f(x')cos(\frac{\pi}{L}x')\right] &= \frac{1}{2} \left[ F(k' + k_1) + F(k' - k_1) \right] \\
|
\mathcal{F}\left[f(x')\cos{\left(\frac{\pi}{L}x'\right)}\right] &= \frac{1}{2} \left[ F(k' + k_1) + F(k' - k_1) \right]
|
||||||
A(k') &= \frac{1}{2} \sqrt{\frac{L}{\pi}} \left\{ \sinc \left( \frac{L}{2\pi} (k' + k_1) \right) + \sinc \left( \frac{L}{2\pi} (k' - k_1) \right) \right\}.
|
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
Letting \(f(x') = \sqrt{\frac{2}{L}}\rect{\left(\frac{x'}{L}\right)}\), we can obtain
|
||||||
|
\begin{align*}
|
||||||
|
A(k') &= \boxed{\frac{1}{2} \sqrt{\frac{L}{\pi}} \left\{ \sinc \left( \frac{L}{2\pi} (k' + k_1) \right) + \sinc \left( \frac{L}{2\pi} (k' - k_1) \right) \right\},}
|
||||||
|
\end{align*}
|
||||||
|
where \(k_1 = \pi/L\).
|
||||||
|
|
||||||
\item %3bii
|
\item %3bii
|
||||||
Beginning with the result for \(A(k')\) above, and writing
|
Beginning with the result for \(A(k')\) above, and writing
|
||||||
@ -568,8 +579,9 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\end{equation*}
|
\end{equation*}
|
||||||
we can obtain
|
we can obtain
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\Phi(p') = \frac{1}{2} \sqrt{\frac{L}{\pi\hbar}} \left\{ \sinc \left( \frac{L}{2\pi\hbar} (p' + p_1) \right) + \sinc \left( \frac{L}{2\pi\hbar} (p' - p_1) \right) \right\}.
|
\boxed{ \Phi(p') = \frac{1}{2} \sqrt{\frac{L}{\pi\hbar}} \left\{ \sinc \left( \frac{L}{2\pi\hbar} (p' + p_1) \right) + \sinc \left( \frac{L}{2\pi\hbar} (p' - p_1) \right) \right\}, }
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
|
where \(p_1 = \hbar\pi/L\).
|
||||||
|
|
||||||
|
|
||||||
\item %3biii
|
\item %3biii
|
||||||
@ -580,23 +592,28 @@ axis([0 1e-9 0 0.04]);
|
|||||||
|
|
||||||
\item %3biv
|
\item %3biv
|
||||||
|
|
||||||
\( sinc \) is a purely real function, so we can ignore the normalizing portion of the integral.
|
\( sinc \) is a purely real function, so we can ignore taking the norm of the integrand.
|
||||||
As well, to simplify the interim equations we will assign the constants \( A = \frac{1}{2} \sqrt{\frac{L}{\pi \hbar}} \)
|
As well, to simplify the intermediate equations we will define the constants \( A = \frac{1}{2} \sqrt{\frac{L}{\pi \hbar}} \)
|
||||||
and \( B = \frac{L}{2 \pi \hbar} \).
|
and \( B = \frac{L}{2 \pi \hbar} \). Then we have
|
||||||
|
|
||||||
\begin{equation*}
|
\begin{align*}
|
||||||
\int _{-\infty} ^{\infty} \Phi (p')^2 dp = \int _{-\infty} ^{\infty} A^2 \left[ sinc\left( B(p'+p_1) \right)^2 + 2 sinc \left( B(p'+p_1) \right) sinc \left( B(p'-p_1) \right) + sinc \left( B(p'-p_1) \right) \right] dp
|
\int _{-\infty} ^{\infty} \Phi (p')^2 \:dp' = \int _{-\infty} ^{\infty} A^2 &\left[ \sinc{\left( B\left(p'+p_1\right) \right)}^2 \right.\\
|
||||||
\end{equation*}
|
&\;\left. + 2 \sinc{ \left( B(p'+p_1) \right)} \sinc{ \left( B(p'-p_1) \right) } + \sinc \left( B(p'-p_1) \right)^2 \right] dp'.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
Given property (26) of the \( sinc \) function, we can simplify the left and right terms.
|
Given property (26) of the \( sinc \) function in the assignment, we can evaluate the left and right terms to be \(1/B\).
|
||||||
Using a change of variable \( p'' = p_1 - p' \), and properties (27) and (28), we can further evaluate the central term.
|
Using a change of variable \( p'' = p_1 - p' \), and properties (27) and (28), we can further evaluate the central cross term:
|
||||||
|
|
||||||
\begin{align}
|
\begin{align*}
|
||||||
\int _{-\infty} ^{\infty} \Phi (p')^2 dp = \int _{-\infty} ^{\infty} A^2 \left[2 sinc \left( B(2p_1 - p'') \right) sinc \left( B(-p'') \right) \right] dp + A^2 \frac{2}{B} \\
|
\int _{-\infty} ^{\infty} \Phi (p')^2 \:dp &= A^2 \frac{2}{B} - \int _{-\infty} ^{\infty} A^2 \left[2 \sinc \left( B(2p_1 - p'') \right) \sinc \left( B(-p'') \right) \right] dp'' \\
|
||||||
&= \int _{-\infty} ^{\infty} A^2 \left[ 2 sinc \left(B(2p_1 - p'') \right) sinc(B p'') \right] dp + A^2 \frac{2}{B} \\
|
&= A^2 \frac{2}{B} - \int _{-\infty} ^{\infty} A^2 \left[ 2 \sinc \left(B(2p_1 - p'') \right) \sinc(B p'') \right] dp'' \\
|
||||||
&= \frac{A^2}{B} \left[ sinc(2p_1) + 2 \right] \\
|
&= \frac{2A^2}{B} - A^2\sinc(2Bp_1) \\
|
||||||
&= \frac{1}{2} \left[ sinc(2p_1) + 2 \right]
|
&= 1 + A^2\sinc(1) \\
|
||||||
\end{align}
|
&= \boxed{1.}
|
||||||
|
\end{align*}
|
||||||
|
Since we obtained \(\Phi(p')\) from a normalized
|
||||||
|
position wave function and we have reasoned that it should have the same properties, but with respect to momentum rather than
|
||||||
|
position, it makes sense that this normalization integral should be 1, just as it would be for the associated position wave function.
|
||||||
|
|
||||||
\item %3bv
|
\item %3bv
|
||||||
|
|
||||||
@ -615,13 +632,13 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\includegraphics[width=\textwidth]{q3bv_fig2.png}
|
\includegraphics[width=\textwidth]{q3bv_fig2.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{(a) momentum wavefunction versus normalized momentum. (b) Probability density versus normalized momentum.}
|
\caption{(a) momentum wave function versus normalized momentum. (b) Probability density versus normalized momentum.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\item %3bvi
|
\item %3bvi
|
||||||
The points of classical momentum are given by \( p_1 = \pm \sqrt{2mE}\). On the normalized plots, these occur at \(\pm 1\) on the \(p/p_1\) axis.
|
The points of classical momentum are given by \( p_1 = \pm \sqrt{2mE}\). On the normalized plots, these occur at \(\pm 1\) on the \(p/p_1\) axis.
|
||||||
Given that \(L = \SI{101}{\angstrom}\), we can find the velocity of the electron by taking \(v = \frac{p_1}{m_e}\). We find that
|
Given that \(L = \SI{101}{\angstrom}\), we can find the velocity of the electron by taking \(v = \frac{p_1}{m_e}\). We find that
|
||||||
\(v = \pm \SI{3.6e4}{m/s}\).
|
\(\boxed{v = \pm \SI{3.6e4}{m/s}}\).
|
||||||
|
|
||||||
\begin{minipage}[t]{\linewidth}
|
\begin{minipage}[t]{\linewidth}
|
||||||
|
|
||||||
@ -646,7 +663,7 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\item %3c
|
\item %3c
|
||||||
Because the probability density is even about \(p' = 0\), we can surmise that \(\left\langle p'\right\rangle = 0\).
|
Because the probability density is even about \(p' = 0\), we can surmise that \(\boxed{\left\langle p'\right\rangle = 0}\).
|
||||||
\newline
|
\newline
|
||||||
To verify this, we find \(\left\langle p'\right\rangle\)
|
To verify this, we find \(\left\langle p'\right\rangle\)
|
||||||
from \(\phi(x') = \sqrt{\frac{2}{L}}\sin{\left(\frac{\pi}{L}x'\right)}\times\rect{\left(\frac{x'}{L}\right)}\) according to
|
from \(\phi(x') = \sqrt{\frac{2}{L}}\sin{\left(\frac{\pi}{L}x'\right)}\times\rect{\left(\frac{x'}{L}\right)}\) according to
|
||||||
@ -659,13 +676,13 @@ axis([0 1e-9 0 0.04]);
|
|||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\left\langle p'\right\rangle\ &= \left.\frac{-i\hbar}{L}\sin^2{\left(\frac{\pi}{L}x'\right)}\right|_{-L/2}^{L/2}\\
|
\left\langle p'\right\rangle\ &= \left.\frac{-i\hbar}{L}\sin^2{\left(\frac{\pi}{L}x'\right)}\right|_{-L/2}^{L/2}\\
|
||||||
\left\langle p'\right\rangle\ &= \frac{-i\hbar}{L}\left(1 - 1\right) = 0,
|
\left\langle p'\right\rangle\ &= \frac{-i\hbar}{L}\left(1 - 1\right) = \boxed{0},
|
||||||
\end{align*}
|
\end{align*}
|
||||||
which verifies our above inference.
|
which verifies our above inference.
|
||||||
\item %3d
|
\item %3d
|
||||||
|
|
||||||
The momentum associated with the wavefunction \( \theta (x') = e^{ik'x'} \) is sharp,
|
The momentum associated with the wave function \( \theta (x') = e^{ik'x'} \) is \boxed{\mathrm{sharp}},
|
||||||
and the corresponding value is \( p' = \hbar k' \).
|
and the corresponding value is \(\boxed{ p' = \hbar k' } \).
|
||||||
|
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\hat{p} = -i \hbar \frac{d}{dx'} e ^{i k' x'} = -i^2 \hbar k' e ^{i k' x'} = \hbar k' e^{i k' x'}
|
\hat{p} = -i \hbar \frac{d}{dx'} e ^{i k' x'} = -i^2 \hbar k' e ^{i k' x'} = \hbar k' e^{i k' x'}
|
||||||
@ -692,12 +709,12 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\includegraphics[width=\textwidth]{q4a_e2.png}
|
\includegraphics[width=\textwidth]{q4a_e2.png}
|
||||||
\caption{}
|
\caption{}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{Probability Density Plots for first two energy levels.}
|
\caption{Probability densities versus position for first two energy levels.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
|
||||||
An \( a \) value of \( 0.53 \angstrom \) was chosen in order to provide an adequately
|
An \( a \) value of \(\boxed{ 0.53 \angstrom } \) was chosen in order to provide an adequately
|
||||||
shaped graph without sacrificing too much computation time and ensure that the first two
|
shaped graph without sacrificing too much computation time and to ensure that the first two
|
||||||
numerical energies correspond to the given experimental results. The experimental results are
|
numerical energies correspond to the given experimental results. The experimental results are
|
||||||
\(\SI{0.14395}{\electronvolt}\) and \(\SI{0.43185}{\electronvolt} \) for the first and second energy levels
|
\(\SI{0.14395}{\electronvolt}\) and \(\SI{0.43185}{\electronvolt} \) for the first and second energy levels
|
||||||
respectively, and the numerical results with our chosen \(a\) are \(\SI{0.14386}{\electronvolt}\) and \(\SI{0.43140}{\electronvolt} \),
|
respectively, and the numerical results with our chosen \(a\) are \(\SI{0.14386}{\electronvolt}\) and \(\SI{0.43140}{\electronvolt} \),
|
||||||
@ -710,29 +727,29 @@ axis([0 1e-9 0 0.04]);
|
|||||||
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
||||||
\item %4bi
|
\item %4bi
|
||||||
|
|
||||||
The energies were used were \( 0.14395eV \) and \( 0.43185eV \) for the first and second energy levels,
|
The energies used were \( \SI{0.14395}{eV} \) and \( 0.43185 - 0.1\:\si{eV} \) for the first and second energy levels,
|
||||||
respectively.
|
respectively.
|
||||||
|
|
||||||
\begin{minipage}[H]{\linewidth}
|
\begin{minipage}[H]{\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{q4bi_I-V.png}
|
\includegraphics[width=0.5\textwidth]{q4bi_I-V.png}
|
||||||
\captionof{figure}{Current vs. Voltage.}
|
\captionof{figure}{Current-voltage characteristic of a 2-level molecule.}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
|
||||||
\item %4bii
|
\item %4bii
|
||||||
|
|
||||||
Between \( 0V \) and \( 0.25V \), only the first energy level is carrying any current.
|
Between \( \SI{0}{V} \) and \( \SI{0.25}{V} \), only the first energy level is carrying any current.
|
||||||
This current drops to 0 above \( 0.25V\) because the coupling between the contacts and that
|
This current drops to 0 above \( \SI{0.25}{V}\) because the coupling between the contacts and that
|
||||||
energy level drops to 0, meaning no electrons can transfer.
|
energy level drops to 0, meaning no electrons can transfer.
|
||||||
|
|
||||||
Between \(0.4V\) and \(0.65V\), only the second energy level is carrying current.
|
Between \(\SI{0.4}{V}\) and \(\SI{0.65}{V}\), only the second energy level is carrying current.
|
||||||
This energy level stops conducting current because it's shifted energy drops below
|
This energy level stops conducting current above \(\SI{0.65}{V}\) because its shifted energy drops below
|
||||||
the threshold where the contacts have any coupling with it.
|
the threshold where the contacts have any coupling with it.
|
||||||
|
|
||||||
\item %4biii
|
\item %4biii
|
||||||
|
|
||||||
Negative Drain Resistance (NDR) is present in this design from a \(V_D\) of
|
Negative differential resistance is present in this design from a \(V_D\) of
|
||||||
approximately \(0.27V\) to \(0.45V\), as well as from \(0.65V\) to \(0.8V\)
|
approximately \(\SI{0.27}{V}\) to \(\SI{0.45}{V}\), as well as from \(\SI{0.65}{V}\) to \(\SI{0.8}{V}\).
|
||||||
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user