saving state
185
PS1/doc.tex
@ -6,7 +6,7 @@
|
||||
\usepackage{color}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{float}
|
||||
\usepackage{caption}
|
||||
\usepackage[justification=centering]{caption}
|
||||
\usepackage{subcaption}
|
||||
\usepackage[margin=0.75in]{geometry}
|
||||
|
||||
@ -89,7 +89,7 @@
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:I_new}
|
||||
I = \frac{q}{\hbar}\frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{-\infty}^{\infty}[f_1(E + U) - f_2(E + U)] DE dE,
|
||||
I = \frac{q}{\hbar}\frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{-\infty}^{\infty}[f_1(E + U) - f_2(E + U)] DE dE.
|
||||
\end{equation}
|
||||
|
||||
\subsection*{(b)}
|
||||
@ -230,6 +230,7 @@ ylabel('Current [A]');
|
||||
|
||||
\subsection*{(c)}
|
||||
|
||||
\subsubsection*{(i)}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{subfigure}{0.5\textwidth}
|
||||
@ -245,7 +246,7 @@ ylabel('Current [A]');
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q1c_2.png}
|
||||
\caption{Plot of channel electrons vs. drain voltage.}
|
||||
\label{fig:q1c_1}
|
||||
\label{fig:q1c_2}
|
||||
% Note that the comment after \end{subfigure} is required for side by side figures
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.5\textwidth}
|
||||
@ -253,7 +254,7 @@ ylabel('Current [A]');
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q1c_3.png}
|
||||
\caption{Plot of channel electrons vs. drain voltage.}
|
||||
\label{fig:q1c_1}
|
||||
\label{fig:q1c_3}
|
||||
% Note that the comment after \end{subfigure} is required for side by side figures
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}{0.5\textwidth}
|
||||
@ -261,7 +262,7 @@ ylabel('Current [A]');
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q1c_4.png}
|
||||
\caption{Plot of channel electrons vs. drain voltage.}
|
||||
\label{fig:q1c_1}
|
||||
\label{fig:q1c_4}
|
||||
% Note that the comment after \end{subfigure} is required for side by side figures
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.5\textwidth}
|
||||
@ -269,13 +270,183 @@ ylabel('Current [A]');
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q1c_5.png}
|
||||
\caption{Plot of channel electrons vs. drain voltage.}
|
||||
\label{fig:q1c_1}
|
||||
\label{fig:q1c_5}
|
||||
% Note that the comment after \end{subfigure} is required for side by side figures
|
||||
\end{subfigure}%
|
||||
|
||||
\caption{Visual representation of the fermi functions of the contacts and channel.}
|
||||
\caption{Visual representation of the Fermi functions of the contacts and channel.}
|
||||
\end{figure}
|
||||
|
||||
Table \ref{table:q1ci} shows the variation in the difference between $f_1$ and $f_2$ at $E = \varepsilon$, and $I$ at different drain voltages.
|
||||
We compare the differences between values at $V_D = 1.0\:V$ and $V_D = 0.8\:V$:
|
||||
|
||||
\begin{equation*}
|
||||
\frac{([f_1(E + U) - f_2(E + U)]|_{E = \varepsilon})|_{V_D = 1.0\:V}}{([f_1(E + U) - f_2(E + U)]|_{E = \varepsilon})|_{V_D = 0.8\:V}} = 1.0363,
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
\frac{I|_{V_D = 1.0\:V}}{I|_{V_D = 0.8\:V}} = 1.0504,
|
||||
\end{equation*}
|
||||
%
|
||||
and between values at $V_D = 0.8\:V$ and $V_D = 0.5\:V$:
|
||||
%
|
||||
\begin{equation*}
|
||||
\frac{([f_1(E + U) - f_2(E + U)]|_{E = \varepsilon})|_{V_D = 0.8\:V}}{([f_1(E + U) - f_2(E + U)]|_{E = \varepsilon})|_{V_D = 0.5\:V}} = 2.1909,
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
\frac{I|_{V_D = 0.8\:V}}{I|_{V_D = 0.5\:V}} = 2.1218.
|
||||
\end{equation*}
|
||||
%
|
||||
In both comparisons we see that $I$ changes in proportion to $[f_1(E + U) - f_2(E + U)]|_{E = \varepsilon}$, as predicted by Equation (9).
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{l | c | c}
|
||||
|
||||
$V_D$ [V] & $[f_1(E + U) - f_2(E + U)]|_{E = \varepsilon}$ & I [nA] \\
|
||||
\hline
|
||||
0.0 & 0.000 & 0.0 \\
|
||||
0.2 & 0.015 & 17.0 \\
|
||||
0.5 & 0.440 & 271 \\
|
||||
0.8 & 0.964 & 575 \\
|
||||
1.0 & 0.999 & 604 \\
|
||||
|
||||
\end{tabular}
|
||||
\captionof{table}{Differences in contact Fermi functions evaluated at $E=\varepsilon$ and current $I$ at different drain voltages $V_D$.
|
||||
Values are taken from Figures \ref{fig:q1b_current} and \ref{fig:q1c_1} to \ref{fig:q1c_5}.}
|
||||
\label{table:q1ci}
|
||||
\end{center}
|
||||
|
||||
|
||||
\subsubsection*{(ii)}
|
||||
Figure \ref{fig:q1c_ii} has the Fermi functions marked at their "step points", or when they are equal to $0.5$.
|
||||
This can be used to find the self-consistant potential $U$, via the equation for the source Fermi function:
|
||||
|
||||
\begin{equation*}
|
||||
f(E + U) = {\frac{1}{1 + e^{(E + U - \mu_1) / k_B T}}}
|
||||
\end{equation*}
|
||||
We could also use the drain Fermi function but since $V_S = 0$, it is simpler to use the source.
|
||||
%
|
||||
The function will "step" when $E = \mu_1 - U$, which from Figure \ref{fig:q1c_ii} occurs at $E = \mu_1 - U = 0.4$ for the source contact.
|
||||
Since $\mu_1 = \mu - q V_S = 0$ We can simply rearrange to find $U = - E = -0.4\:eV$.
|
||||
|
||||
\begin{figure}[H]
|
||||
% Mess around with widths later
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{q1c_ii.png}
|
||||
\caption{Marked step points of contact Fermi functions.}
|
||||
\label{fig:q1c_ii}
|
||||
% Note that the comment after \end{subfigure} is required for side by side figures
|
||||
\end{figure}%
|
||||
|
||||
\subsubsection*{(iii)}
|
||||
|
||||
At $V_D = 1V$, the source is trying to {\em fill} the channel level while the drain is trying to {\em empty} it.
|
||||
This is because the source has electrons at the channel level, and is filling these in while the drain does not have
|
||||
any and is attempting to bring the channel level back down to where it is.
|
||||
|
||||
\subsubsection*{(iv)}
|
||||
|
||||
Referring to figure \ref{fig:q1c_ii} again, we can see the areas where the difference between the Fermi functions of each contact
|
||||
are 1. Roughly, this means that the channel current $I$ would remain the same if the channel energy level was anywhere between
|
||||
$0.3eV$ and $-0.5eV$.
|
||||
|
||||
\subsubsection*{(v)}
|
||||
|
||||
There is no current when $V_D = 0$ because the source does not want to fill the channel. It has no electrons
|
||||
at the channel energy level, and thus there is no impetus to fill the channel. A similar story occurs with the
|
||||
drain, in that it has no electrons at the appropriate energy level, and there are none in the channel for it to pull out.
|
||||
|
||||
\section*{Question 2}
|
||||
|
||||
\subsection*{(a)}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{subfigure}{0.7\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{q2_I-V.png}
|
||||
\caption{I-V curves.}
|
||||
\label{fig:q2_iv}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.33\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q2_0V.png}
|
||||
\caption{Fermi Functions at $0V$.}
|
||||
\label{fig:q2_0v}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}{0.33\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q2_0V05.png}
|
||||
\caption{Fermi Functions at $0.05V$.}
|
||||
\label{fig:q2_0v}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}{0.33\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q2_0V1.png}
|
||||
\caption{Fermi Functions at $0.1V$.}
|
||||
\label{fig:q2_0v}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.33\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q2_0V2.png}
|
||||
\caption{Fermi Functions at $0.2V$.}
|
||||
\label{fig:q2_0v}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}{0.33\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q2_0V3.png}
|
||||
\caption{Fermi Functions at $0.3V$.}
|
||||
\label{fig:q2_0v}
|
||||
\end{subfigure}
|
||||
\caption{stuff and things}
|
||||
\end{figure}
|
||||
|
||||
\subsection*{(b)}
|
||||
|
||||
We can see from these figures that the area under the $f_1(E + U) - f_2(E + U)$ curve
|
||||
gradually moves down in energy, this measn that a smaller and smaller portion of it is
|
||||
above $E = 0eV$, which means there are fewer total energy levels through which current
|
||||
can flow. From this we can see that with a high enough $V_D$ we will hit saturation, and
|
||||
be unable to pass more current.
|
||||
|
||||
\subsection*{(c)}
|
||||
|
||||
At $V_D = 0.3V$, the energy levels from approximately $0$ to $0.2$ $eV$ are being
|
||||
used for electron transport. This is the range where the difference in the contact Fermi
|
||||
functions is more than 0 and the energy is more than 0.
|
||||
|
||||
The difference between the two contacts is the greatest at $0eV$, because this is the
|
||||
point at which their Fermi functions have the greatest difference, and thus will be making
|
||||
the most "effort" to equalize the channel potential.
|
||||
|
||||
\subsection*{(d)}
|
||||
|
||||
Based on the supposed material changes, we would choose material A to maximize the
|
||||
drain current. The energy levels vanishing at $-0.4eV$ would mean that there is a
|
||||
greater number of energy levels that would be able to be used for conduction. There
|
||||
would be a larger {\em area} where there is a non-zero difference in the two Fermi
|
||||
functions at the contacts and there are energy levels available in the channel.
|
||||
|
||||
This can be contrasted with material B, which would have {\em no} energy levels in
|
||||
this "conduction" zone and thus no current would be able to flow at all.
|
||||
|
||||
\section*{Question 3}
|
||||
|
||||
\subsection*{(a)}
|
||||
\subsection*{(b)}
|
||||
\subsection*{(c)}
|
||||
\subsection*{(d)}
|
||||
|
||||
\section*{Question 4}
|
||||
|
||||
\subsection*{(a)}
|
||||
\subsection*{(b)}
|
||||
\subsection*{(c)}
|
||||
\subsection*{(d)}
|
||||
\subsection*{(e)}
|
||||
\subsection*{(f)}
|
||||
\subsection*{(g)}
|
||||
|
||||
|
||||
|
||||
|
||||
% TODO appendix for Part C code
|
||||
|
@ -4,6 +4,7 @@ clear all;
|
||||
|
||||
% Physical constants
|
||||
hbar = 1.052e-34;
|
||||
q = 1.602e-19;
|
||||
|
||||
% Single-charge coupling energy (eV)
|
||||
U_0 = 0.25;
|
||||
|
BIN
PS1/q2_0V05.png
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 23 KiB |
BIN
PS1/q2_0V1.png
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 23 KiB |
BIN
PS1/q2_0V2.png
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 24 KiB |
BIN
PS1/q2_0V3.png
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 24 KiB |
32
PS1/q3.m
Normal file
@ -0,0 +1,32 @@
|
||||
% Thermo-electric current
|
||||
|
||||
% Physical constants
|
||||
hbar = 1.054e-34;
|
||||
q = 1.602e-19;
|
||||
|
||||
% Parameters (eV)
|
||||
kBT_1 = 0.025;
|
||||
kBT_2 = 0.026;
|
||||
mu = 0;
|
||||
gamma_1 = 0.005;
|
||||
gamma_2 = gamma_1;
|
||||
gamma_sum = gamma_1 + gamma_2;
|
||||
|
||||
% Channel energy levels, varying between -0.25eV and 0.25eV
|
||||
epsilon = linspace(-0.25, 0.25, 101);
|
||||
|
||||
% Energy grid
|
||||
E = linspace(-1, 1, 501);
|
||||
|
||||
% Contact fermi functions
|
||||
f_1 = 1 ./ (1 + exp((E - mu)./kBT1));
|
||||
f_2 = 1 ./ (1 + exp((E - mu)./kBT2));
|
||||
|
||||
% Iterate through channel energy levels
|
||||
for n = 1:length(epsilon)
|
||||
% Compute energy level density functions - integral normalized to unity
|
||||
D = (gamma./(2*pi))./((E-cal_E(count)).ˆ2+((gamma./2).ˆ2));
|
||||
D = D./(dE*sum(D));
|
||||
|
||||
|
||||
end
|