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Question 1

(a)
Beginning with the following two equations:
E
’Yl + 72
q M2
E)D(E—-U)dE, 2
h%+w/’vu> FBID(E - U) ©)

and changing the variable of integration to £’ = E — U:

N = / v f1 E/+U)+72f2(E/+U)
Y1+ 72

D(E')dE,

4 mr [T , B ) N
R /_Oc[fl(E +U) — fo(E' + U)|D(E")E'.

Replacing £/ — E, we obtain equations 3 and 4.

Y1t 2
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(b)
For the provided constants, the plots of the number of channel electrons and the channel current follow:
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(a) Plot of channel electrons vs. drain voltage. (b) Plot of channel current vs. drain voltage.

Figure 1: Number of electrons and current versus drain voltage.
Below is our code. Note that some variable names are different from those in the example code.
clear all;

% Physical constants

1
2
3
4 %% Constants
5
6
7 hbar = 1.052e—34;
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% Single—charge coupling energy (eV)

U0 = 0.25;
% (eV)
kBT = 0.025;

% Contact coupling coefficients (eV)
gamma-1 = 0.005;

gamma_2 = gamma_l;

gamma_sum = gamma_l + gamma_2;
% Capacitive gate coefficient
a.G = 0.5;

% Capacitive drain coefficient
aD = 0.5;

aS =1—aG — a.D;

% Central energy level
mu = 0;

% Energy grid, from —1eV to 1eV
NE = 501;

E = linspace(—1, 1, NE);

dE = E(2) — E(1);

% TODO name this better

cal E = 0.2

% Lorentzian density of states, mormalized so the

integral 1is

D = (gammasum / (2%pi)) ./ ( (E-cal_E)."2 4+ (gamma_sum/2)."2

D=D ./ (dExsum(D));

% Reference no. of electrons in channel
N_O = 0;

voltages = linspace (0, 1, 101);

% Terminal Voltages
V.G = 0;
V.S = 0;

for n = 1:length(voltages)
% Set wvarying drain voltage
VD = voltages(n);

% Shifted energy levels of the contacts
mu_.l = mu — V_S;
mu-2 = mu — V.D;

% Laplace potential, does not change as solution is found (eV)

% q is factored out here, we are working in eV
UL =— (a.G¥V.G) — (a.D*xV.D) — (a_.SxV_.S);

% Poisson potential must change, assume 0 init
U_P = 0;

% Assume large rate of change
dU_P = 1;

% Run until we get close enough to the answer
while dUP > 1le—6
% source Fermi function
fo1 =1 ./ (1 + exp((E + UL + UP — mu-1)
% drain Fermi function
f2=1./ (1 +exp((E+ UL+ UP — mu2)

ially (eV)

./ kBT));

./ kBT));

1
)



70

71 % Update channel electrons against potential

72 N(n) = dE * sum( ((gamma_l/gamma.sum) .* f_1 4+ (gamma_2/gamma.sum) .% f_2)
73

74 % Re—update Poisson portion of potential

75 tmpUP = U0 * ( N(n) — N.0);

76 dU_P = abs(U.P — tmpU_P);

7

78 % Unsure why U_P is updated incrementally, perhaps to avoid oscillations?

79 %U_P = tmpU_P;

80 %U_P = UP + 0.1 * (tmpU.P — U_P);

81 end

82

83 % Calculate current based on solved potential.

84 % Note: f1 is dependent on changes in U but has been updated prior in the loop
85 I(n) = q % (g/hbar) % (gamma_l % gamma.l / gammasum) * dE % sum((f_-1—f_2).%D);
86

87 end

88

89

90 %%Plotting commands

91

92 figure (1);

93 h = plot(voltages, N, 'k’);

94 grid on;

95 set(h, linewidth’ ,[2.0]);

96 set(gca, Fontsize’ [[18]);

97 xlabel(’Drain_voltage_[V]);

98 ylabel (’Number_of_electrons’);

99

100 figure (2);

101 h = plot(voltages, I,7k’);

102 grid on;

103 set (h, 'linewidth’ ,[2. ;

104 set(gca, Fontsize’ ,[18]);

105 xlabel(’Drain_voltage_[V]’);
);

106 ylabel (' Current.[A]”’

0));
)
v

)



ENERGY [eV]

ENERGY [eV]

(a) Plot of channel electrons vs. drain voltage. (b) Plot of channel electrons vs. drain voltage.
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(c) Plot of channel electrons vs. drain voltage. (d) Plot of channel electrons vs. drain voltage.
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(e) Plot of channel electrons vs. drain voltage.

Figure 2: Visual representation of the Fermi functions of the contacts and channel.




Table 1 shows the variation in the difference between f; and fo at E = ¢, and I at different drain voltages. We
compare the differences between values at Vp = 1.0V and Vp = 0.8 V:

([fi(E+U) = fo(E+U)l|p=2)lvp=1.0v

— 1.0363,
([fi(E+U) = fo(E+U)l|g=2)lvp=08v
Ovo=10v _ 3 o504,
Ilyp=08v
and between values at Vp =0.8V and Vp =0.5V:
E — fo(E Iy
(AE+U) = fo(E+ Ullp=e)lvo=08v _ 5 1949

([L(E+U) = fo(E+U)l|g=c)|lvp=05v

Nvo=osv _ 2.1218.

Ilvp=o0s5v

In both comparisons we see that I changes in proportion to [f1(F + U) — fo(E + U)]|g=., as predicted by Equation

9.

Vo [V] | [I(E+U) = fo(E+U)][p=c | I [nA]
0.0 0.000 0.0
0.2 0.015 17.0
0.5 0.440 271
0.8 0.964 575
1.0 0.999 604

Table 1: Differences in contact Fermi functions evaluated at F = ¢ and current I at different drain voltages Vp.
Values are taken from Figures 1b and 2a to 2e.

(ii)
Figure 3 has the Fermi functions marked at their ”step points”, or when they are equal to 0.5. This can be used to
find the self-consistant potential U, via the equation for the source Fermi function:

1

f(E+U) = 1 4+ e(B+U—m1)/ksT

We could also use the drain Fermi function but since Vg = 0, it is simpler to use the source. The function will ”step”
when F = pp — U, which from Figure 3 occurs at E = u; — U = 0.4 for the source contact. Since u; = u—qVg =0
We can simply rearrange to find U = —F = —0.4¢eV.
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Figure 3: Marked step points of contact Fermi functions.

(iii)

At Vp = 1V the source is trying to fill the channel level while the drain is trying to empty it. This is because the
source has electrons at the channel level, and is filling these in while the drain does not have any and is attempting
to bring the channel level back down to where it is.

(iv)

Referring to figure 3 again, we can see the areas where the difference between the Fermi functions of each contact are
1. Roughly, this means that the channel current I would remain the same if the channel energy level was anywhere
between 0.3eV and —0.5¢V.

(v)
There is no current when Vp = 0 because the source does not want to fill the channel. It has no electrons at the

channel energy level, and thus there is no impetus to fill the channel. A similar story occurs with the drain, in that
it has no electrons at the appropriate energy level, and there are none in the channel for it to pull out.



Question 2

(a)
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Figure 4: (a) depicts I-V curves at Vg = 0.5 V (higher curve) and Vi = 0.25 V. (b) through (f) show Fermi
functions and D(F) at various drain voltages.

(b)

As the drain voltage increases, we see that the overlapping area under the ”curve” of fi(E+U)— fo(E+U) and D(E)
increases, up until the point where the drain only has electrons below the energy levels available in the channel. The
difference function also reaches its maximum height and it widens downward rather than upward. At this point, the
overlapping area no longer increases, and therefore the current does not increase either, hitting saturation current.



(c)

At Vp = 0.3V, the energy levels from approximately 0 to 0.2 eV are being used for electron transport. This is the
range where the difference in the contact Fermi functions is more than 0 and the energy is more than 0.

The difference between the two contacts is the greatest at 0eV', because this is the point at which their Fermi functions
have the greatest difference, and thus will be making the most ”effort” to equalize the channel potential.

(d)

Based on the supposed material changes, we would choose material A to maximize the drain current. The energy
levels vanishing at —0.4eV would mean that there is a greater number of energy levels that would be able to be used
for conduction. There would be a larger area where there is a non-zero difference in the two Fermi functions at the
contacts and there are energy levels available in the channel.

This can be contrasted with material B, which would have no energy levels in this ”conduction” zone and thus no
current would be able to flow at all.

Question 3

(a)

Below is our code. Note that some variable names are different from those in the example code.

(b)
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(d)

The difference in temperature causes a difference in the sharpness of the contact Fermi functions. This in turn leads
to the behaviour in fi; — fs seen in Figures 6a and 6b. As seen in the previous questions, the current is proportional
to the area under the curve of the D(E)  [f1 — f2]. When the channel level is € = —0.05 eV, the positive region of
[f1 — f2] overlaps the non-zero part of D(E), giving a positive current. Alternatively, when ¢ = 0 eV, half of the
area under D(F) overlaps with the negative part of [f; — fa], while half overlaps the positive part. Thus the areas
cancel out completely, and the resultant current is 0. A plot of ¢ = +0.05 eV would show overlap of D(FE) with the
negative part of [f; — fa], explaining why we get a reverse current flow at that channel level. The maximum current
occurs at € = £0.4 eV (relative to p).

Question 4

(a)
(1)
I=0,N=0

This is because the only allowed energy level in the channel is at a higher energy level than exists in either of the
contacts, thus there are no electrons that would flow into the channel from either contact, thus no current and no
electrons in the channel.

(ii)
I=608nA,N =05

Given that we are operating with a single energy level in the channel, we can use the equations 9 and 10 (provided
in the assignment) directly.

_ g 0.005¢V - 0.005¢V
T R 0.005e¢V + 0.005eV

~0.005¢V - 1+0.005¢V -0 05
©0.005eV +0.005eV

[1—0] =608 nA

(iii)
I=0AN=1



Given that we are operating with a single energy level in the channel, we can use the equations 9 and 10 (provided
in the assignment) directly.

_ ¢ 0.005¢V - 0.005¢V/
" R 0.005¢V 4 0.005eV

~0.005eV - 14 0.005¢V -1
~0.005eV +0.005eV

1-1=0A4

(b)
(1)
For f1(E + U) the step point occurs at £ = 1 — U = 0.25 eV. Since U = —0.25 eV, it follows that pu; = 0 eV. Since

= p—qVs and p =0 eV, Vg =0 V. For fo(E + U) the step point occurs at E = pus — U = —0.25 eV. Since
U = —-0.25 eV, it follows that us = —0.5 eV. Since u; = pu—qVp and u=0eV, Vp =05 V.

(ii)
For f1(E) the step point occurs at F = p; = 0.25 eV. Since p1 = pp — ¢Vs and =0 eV, Vg = —0.25 V. For fo(F)

the step point occurs at £ = us = —0.25 eV. Since u; = — qVp and p =0 eV, Vp = 0.25 V. This assumes U = 0
eV.

(c)
(i)
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Figure 7: Visualisation of energy levels.
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(ii)
Starting with equation 2 in the assignment we get:
q 0.0052 /“ A
I==- . 1-0]-10%dE
h 0.0l ,0,1[ )

0.0052
0.01

[:%. -[10*-0.2 — 10* - —0.1]

I=18mA
(iii)
The graph for the fermi functions at the saturation potentials will look much the same, except that they will be

shifted up. This means that there is more area "under” the difference between the fermi functions and thus the
bounds of integration can shift and become [—0.1,0.3].

g 0.0052 /0'3 A
I==. : 1—0]-10*E
h o 0.01 _0_1[ )

0.0052
0.01

1:%. -[10*-0.3 = 10* - —0.1]

I =24mA

(d)

Using equation (5) in the assignment and plugging in the given values we obtain:

CsVs +CaVa + CDVD] n qQ(N — NO)

CE C’E
U=—-asVs—acVg—apVp + UO(N — NO) eV
U=-0-0—-05-0eV —-05-0.6eV +0.25¢eV -(0.325 —0) eV
U= -0.21875¢eV

U= —q|

Then, starting with Equation 3 and plugging in D(E — U) = §(F — ), we obtain

_ file+U) +v2fale +U)
Y1+ 72

Recalling that the expressions for the contact Fermi functions are (with g =0 eV):

N

U) = ! = .
file+U) = 1+ eetU+aVs)/ksT — 1 4+ ¢(0.2—0.21875+0)/0.025

1 1
fo(e+U) = 1+ c0e+U+aVo)/RaT ] 4 o(0.2-0.2187510.6)/0.025 0

=0.679

Then, solving for ~s:

N — fi(e +U) _3
=y————= =545 x10"" eV
Y2 ’Yzfg(e—i—U)—N
(e)
Assuming the density of states for each molecule can be modeled by D(E) = §(E—¢), Equation (12) in the assignment

is valid here. Thus the current will be maximized when [f1(E)— f2(E)]| = is maximized. Solving [f1(E)— f2(E)]|p=<
for each molecule, we obtain:
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Molecule A:

1 1 1 1
E — E —e4 = = — = = — — 0
E) = B Bllemen = T e T T Tt T er
Molecule B:
1 1 1 1
[f1(E) = fo(E)||p=cp = o — = - = 10.02493
1+ eF801 1+ eFB2 14+ ev.022 1 + e0.027
Molecule C:
1 1 1 1
[[1(E) = f2(B)l|p=cc = - - —+ = 0.00877

el o — —0.1
14 e%T1 14 e*BT2 1 + eo02a 1 + eoo27

Molecule B should be chosen.

(f)
Referring again to equation 2 in the assignment, we know that D(F) is valid for all E, however since 7; is dependant
on the energy level, we can use it to reduce our limits. For material A, this means we only care about E above 0eV,

and for B, E below 0eV. Since we know the voltages on the contacts, we can calculate the effective fermi level at
each.

p1 =po—Vs=0—(=2V)=2eV
,uQ:,uo—VD:O—1V:—1eV

With the fermi levels of each contact, we can adjust the limits of integration further for each material. Material A
can be evaluated on [0eV, 2eV], and material B can be evaluated on [—1eV, 0eV].

g 0.0052 /2 A
Io==- | 1=0]-10%E
A7 R 001 0[ 0] 10
I =122mA
g 0.0052 /2 A
Ip=-- [ [1-0]-10%E
57 R 001 0[ 0]-10
I4=6.1mA

Material A should be chosen.

(2)

Using Ohm’s law we find the corresponding conductance:

oz 500 nA
maxr — = =11 .
7 Vo T a3my o L16mS

We expect this result to be an integer multiple of Gy = 38.76 u.S, the quantum of conductance. We find

Omaz
— =3
Go

We conclude there are 3 levels.
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