% A simple MATLAB code to plot the momentum % wave function for a particle in an escape-proof "box" clear all hbar = 1.054e-34; L = 101e-10; % Set up k' and p' axes k_prime = linspace(-2*pi/L,2*pi/L,100); dk_prime = k_prime(2) - k_prime(1); p_prime = hbar * k_prime; dp_prime = p_prime(2) - p_prime(1); % k1 and p1 k1 = (pi/L); p1 = hbar * k1; % Fourier transform A(k') A1 = 0.5*sqrt(L/pi)*( sinc((k_prime+k1)*L/(2*pi)) ); A2 = 0.5*sqrt(L/pi)*( sinc((k_prime-k1)*L/(2*pi)) ); A = A1 + A2; A_sum = sum(abs(A).^2)*dk_prime; % Momentum wave function Phi(p') Phi1 = 0.5*sqrt(L/(pi*hbar))*( sinc((p_prime+p1)*L/(2*pi*hbar)) ); Phi2 = 0.5*sqrt(L/(pi*hbar))*( sinc((p_prime-p1)*L/(2*pi*hbar)) ); Phi = Phi1 + Phi2; Phi_sum = sum(abs(Phi).^2)*dp_prime; % Normalized p' axis for plotting purposes; the points of classical % momenta occur when the variable pp_N is plus or minus unity pp_N = p_prime / p1; figure(1); clf; h = plot(pp_N,Phi1,'kx',pp_N,Phi2,'ko',pp_N,Phi,'k--'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('NORMALIZED MOMENTUM [p^{\prime}/p_1]'); ylabel('WAVE FUNCTION [sqrt(s / kg m)]'); legend('Phi1','Phi2','Phi'); figure(2); clf; h = plot(pp_N,abs(Phi).^2,'k-'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('NORMALIZED MOMENTUM [p^{\prime}/p_1]'); ylabel('PROBABILITY DENSITY [s / kg m]');