clear all; %physical constants in MKS units hbar = 1.054e-34; q = 1.602e-19; m = 9.110e-31; epsilon_0 = 8.854e-12; %generate lattice N = 100; %number of lattice points n = [1:N]; %lattice points a = 0.1e-10; %lattice constant r = a * n; %x-coordinates t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor L = a * (N+1); %total length of consideration %set up Hamiltonian matrix U = -q^2./(4*pi*epsilon_0.*r) * (1/q); %potential at r in [eV] main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix [eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each column is an eigenvector %"E_diag" is a diagonal matrix where the %corresponding eigenvalues are on the %diagonal. E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues % return eigenvectors for the 1st and 50th eigenvalues phi_1 = eigenvectors(:,1); phi_2 = eigenvectors(:,2); % find the probability densities of position for 1st and 50th eigenvectors P_1 = phi_1 .* conj(phi_1); P_2 = phi_2 .* conj(phi_2); % Plot the probability densities for 1st and 2nd eigenvectors figure(1); clf; h = plot(r,P_1,'k-'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('RADIAL POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]'); yticks([0.02 0.04 0.06 0.08 0.10 0.12]); legend('n=1'); axis([0 1e-9 0 0.12]); figure(2); clf; h = plot(r,P_2,'k-'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('RADIAL POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]'); yticks([0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04]); legend('n=2'); axis([0 1e-9 0 0.04]);