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Problem 1

(a) (i) The matrix equation is
[Ĥ] {φ} = E {φ} ,

where [Ĥ] is an N -by-N matrix with [Ĥ]nm = 0 except for the following elements:

[Ĥ]nn = 2t0 + Un

[Ĥ]n,n±1 = −t0
[Ĥ]0,N = [Ĥ]N,0 = −t0,

with t0 = ~2/(2ma2) and Un = U(na). The N -vector {φ} has elements φn which each represent the value
of the eigenvector at the point na = xn.

(ii) The expression of the wave function φ(x) as a sum of basis functions is as below:

φ(x) =

N∑
n=1

φnun(x)

The derived matrix equation:

[Ĥ]u{φ} = [S]u{φ}

Where [Ĥ]u is a matrix with the elements:

Hnm =

∫
u∗n(x)Ĥum(x)dx

and [S]u is a matrix with the elements:

Snm =

∫
u∗n(x)um(x)dx

[Ĥ]u and [S]u are both of size N -by-N . The elements of {φ}, φn, are the expansion coefficients of φ(x).

(b) (i) code:

1 %constant s
2 E1 = =13.6;
3 R = 0 . 0 7 4 ;
4 a0 = 0 . 0 5 2 9 ;
5

6 %matrix e lements
7 R0 = R/a0 ;
8

9 a = 2*E1*(1=(1+R0) *exp(=2*R0) ) /R0 ;
10 b = 2*E1*(1+R0) *exp(=R0) ;
11 s = exp(=R0) *(1+R0+(R0ˆ2/3) ) ;
12

13 %matr i ce s
14 H u = [ E1 + a , E1* s+b ; E1* s+b , E1 + a ] ;
15 S u = [ 1 , s ; s , 1 ] ;
16

17 %f i n d e i g e n v a l u e s and e i g e n v e c t o r s
18 [ vector s , e n e r g i e s ] = e i g ( inv ( S u ) *H u ) ;
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The bonding and antibonding eigenenergies are −32.2567 eV and −15.5978 eV respectively.

(ii) Neglecting normalization, we have the following expressions for φB(z) and φA(z):

φB(z) = uL(z) + uR(z)

φA(z) = uL(z)− uR(z).

We obtain the following plot:

Figure 1. non-normalized probability densities for bonding and antibonding
solutions.
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Problem 2

(a) (i)

Figure 2. Energy vs. wave vector relationship.

(ii) Energy values from −2 eV to 2 eV are allowed.

(iii) The vector {φ}, which is of length N , and has elements n is:

{φ} = Ceik·na

{φ} =


Ceika

Ceik2a

...
CAe

ikNa


The corresponding wave function is:

φ(x) =

N∑
n=1

Ceik·naun(x)

There is one wave function and thus one energy level for each value of k. This means that there is one
electronic state per k.

(b) (i)

{φ} =



CAe
ika

CBe
ika

CAe
ik2a

CBe
ik2a

...
CAe

ikNa

CBe
ikNa


(ii)

φ(x) =

N∑
n=1

CAe
iknaunA(x) + CBe

iknaunB(x)

(iii) [h(k)] is of size 2-by-2. Thus there will be two values of E(k) for a fixed k. This also means there are
two φ(x) for each k.
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(c) (i)

φ2 + 2φ3 + φ4 = Eφ1

φ1 + φ3 + 2φ4 = Eφ2

2φ1 + φ2 + φ4 = Eφ3

φ1 + 2φ2 + φ3 = Eφ4

(ii)

φ2 + 2φ3 + φ0 = Eφ1

φ1 + φ3 + 2φ4 = Eφ2

2φ5 + φ2 + φ4 = Eφ3

φ5 + 2φ6 + φ3 = Eφ4

(iii) A generalized form of the nth equation is:

Eφn = φn−1 + φn+1 + 2φn+2

(iv)

ECeikna = Ceik(n+1)a + Ceik(n−1)a + 2Ceik(n+2)a

E = eika + e−ika + 2e2ika

E(k) = 2e2ika + 2 cos(ka) (1)

(v) Imposing the repeating boundary conditions φn+4 = φn, We obtain the following relationship:

Ceikna = Ceik(n+4)a

1 = ei4ka

For this to hold, 4ka must be some multiple of 2π, and this mean k = π
2a · integer.

(vi) Using the E-k relationship from equation 1, we know that k must always be real, so the 2 cos(ka) portion
of the E-k relationship must be real. As well, if we substitute in the equation for k we obtained in part (v),
we get the following (partial) expression:

2ei2ka = 2eiπ·integer

Which we know will always be real (with a value of ±2).

(vii) Since e2πn = 1, we have:

φn(k +
2π

a
) = Cei(k+ 2π

a )·nA = Ceik·nA

φn(k +
2π

a
) = φn(k).

Therefore wavefunctions for which k is separated by 2π
a are equivalent, and we only need consider the

range k ∈ [−πa ,
π
a ].
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Problem 3

(a) Given the geometry and interaction rules stated, the interaction matrices [H]nm are zero except for

[H]nn =

[
E0 ti
ti E0

]
[H]n,m∗ =

[
tA 0
0 tB

]
where m∗ corresponds to any of the four nearest neighbor square-shaped unit cells to cell n. For cell n, let
cell a be above, cell b be to the right, cell c be below, and cell d be to the left. Given that each cell is spaced

a length a apart, the associated phase factors for nonzero Hnm, ei
~k·( ~dm− ~dn), are then:

(n) : 1

(a) : eikya

(b) : eikxa

(c) : e−ikya

(d) : e−ikxa

with ~k = kxx̂+ ky ŷ. The Bloch matrix then follows:

[h(~k)] =
∑
m

[H]nme
i~k·( ~dm− ~dn)

=

[
E0 + tA

(
eikxa + e−ikxa + eikya + e−ikya

)
ti

ti E0 + tB
(
eikxa + e−ikxa + eikya + e−ikya

)]
=

[
E0 + 2tA (cos(kxa) + cos(kya)) ti

ti E0 + 2tB (cos(kxa) + cos(kya))

]

(b) To find the E-~k relationship in terms of cosine functions, we must first find h0 in terms of trigonometric
functions. We will require the following trigonometric identities to do so:

sin(α± β) = sin(α) cos(β)± sin(β) cos(α) (2)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(α) (3)

1 = sin2(θ) cos2(θ), (4)

as well as the following general sine/cosine properties:

cos(θ) = cos(−θ)
sin(θ) = − sin(−θ).

(5)

First we can rewrite the exponentials in h0 using Euler’s identity:

h0 = −tc (1 + cos(−kxa− kyb) + i sin(−kxa− kyb) + cos(−kxa+ kyb) + i sin(−kxa+ kyb))
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Using identities (2) and (3), we can expand this relationship further.

h0 = −t+ c
(
1 + cos(−kxa) cos(−kyb)− sin(−kxa) sin(−kyb) + i sin(−kxa) cos(−kyb) + i sin(−kyb) cos(−kxa)

+ cos(kyb) cos(kxa) + sin(kyb) sin(kxa) + i sin(kyb) cos(kxa)− i sin(kxa) cos(kyb)
)

Here we can use the properties from (5) to reduce this equation. Since |h0|2 = h0h
∗
0, we also obtain a simple

expression for h∗0.

h0 = −tc (1 + 2 cos(kxa) cos(kyb)− 2i sin(kxa) cos(kyb))

h∗0 = −tc (1 + 2 cos(kxa) cos(kyb) + 2i sin(kxa) cos(kyb))

We can now find |h0|2 = h0h
∗
0:

h0h
∗
0 = 1 + 4 cos(kxa) cos(kyb) + 4 cos2(kyb)

From this, we can finally obtain an expression for E(~k):

E(~k) = E0 ± tc
√

1 + 4 cos(kxa) cos(kyb) + 4 cos2(kyb) (6)

Page 7



ECE 456 - Problem Set 3 David Lenfesty and Phillip Kirwin

Problem 4

(a) We can substitute (from the assignment) equation (24) into equation (23):

∑
k

i~
∂

∂t
ck(t)φk(x)e−i[E(k)/~]t =

∑
k

ck(t)Ĥ0φ(x)e−i[E(k)/~]t (7)

+
∑
k

ck(t)Us(x, t)φk(x)e−i[E(k)/~]t (8)

We can partially evaluate the derivative on the left hand side:

∂

∂t
ck(t)φk(t)e−i[E(k)/~]t =

∂ck(t)

∂t
φk(t)e−i[E(k)/~]t − i

~
ck(t)E(k)φk(x)e−i[E(k)/~]t

Expanding the rightmost term out into the summation, we get the expression
∑
k ck(t)E(k)φk(x)e−i[E(k)/~]t.

Since Ĥ0φk(x) = E(k)φk(x), we can see that this cancels out the term with Ĥ0 in our first substition (8), and
we get the final differential equation:

∑
k

ck(t)Us(x, t)φk(x)e−i[E(k)/~]t =
∑
k

i~
∂ck(t)

∂t
φk(x)e−i[E(k)/~]t

(b) ∑
k

ck(t)

[∫
φ∗kf (x)Us(x, t)φk(x) dx

]
e−i[E(k)/~]t =

∑
k

i~
∂ck(t)

∂t

[∫
φ∗kf (x)φk(x) dx

]
e−i[E(k)/~]t

∑
k

ck(t)Ikfke
−i[E(k)/~]t =

∑
k

i~
∂ck(t)

∂t
δkfke

−i[E(k)/~]t

∑
k

ck(t)Ikfke
−i[E(k)/~]t = i~

∂ck(t)

∂t
e−i[E(k)/~]t

where Ikfk is as defined in the assignment and δkfk is the Kronecker delta.

(c) Starting with the initial equation

∑
k

ck(t)Ikfke
−i[E(k)/~]t = i~

∂ckf (t)

∂t
e−i[E(kf )/~]t

Since we approximated that ck = 1 only when k = ki and is 0 otherwise, we can simplify the sum on the left
hand side to a single element, and divide out the exponentials.

Ikfkie
i[−E(ki)+E(kf )/~]t = i~

∂ck(t)

∂t

Defining a new symbol Λ = [E(kf )− E(ki)]/~, we can simplify the equation to its final form.
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Ikfkie
iΛt = i~

∂ck(t)

∂t
(9)

(d) ∫
∂ckf (t)

∂t
=

1

i~
Ikfki

∫
eiΛt

ckf (t) =
1

i~
Ikfki

1

iΛ
eiΛt + C

ckf (t) =
1

i~
Ikfkie

iΛt/2

[
1

iΛ
eiΛt/2 + Ce−iΛt/2

]
Let C = − 1

iΛ . We then have:

ckf (t) =
1

i~
Ikfkie

iΛt/2 1

iΛ

[
eiΛt/2 − e−iΛt/2

]
ckf (t) =

1

i~
Ikfkie

iΛt/2 sin(Λt/2)

Λ/2
.

(e) To generate the points, we used a simple MATLAB script:

1 % Parameters to change
2 N D = 4.7 e15 ;
3 N A = 1.6 e15 ;
4

5 % Logarithmic t i c k marks
6 T = [ 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 ] ;
7

8 gamma = 1.057 e7 * T / s q r t (N D = N A) ;
9

10 m u n f i r s t = 21 .15 e17 * (T. ˆ ( 3 / 2 ) / (N D + N A) ) ;
11 mu n last = ( log (1 + gamma. ˆ 2 ) = (gamma.ˆ2 . / (1 + gamma. ˆ 2 ) ) ) ;
12

13 mu n = m u n f i r s t . / mu n last ;
14

15 f o r n = 1 : l ength (T)
16 f p r i n t f (”T = %dK: %f \n” , T(n) , mu n(n) ) ;
17 end

Plotting on the provided graph, gives the following:
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Figure 3. Graph of electron mobility in GaAs.

It’s clear that our calculated results match up well with the theoretical results.
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