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Problem 1

(a)

(b)

(i)

(i)

The matrix equation is .
[H]{¢} = E{¢},
where [H] is an N-by-N matrix with [H],, = 0 except for the following elements:
[H]pn = 2to + Uy
[ﬁ]71,ni1 = 7t0

[H]o,n = [H]no = —to,

with tg = h?/(2ma?) and U,, = U(na). The N-vector {¢} has elements ¢,, which each represent the value
of the eigenvector at the point na = x,,.

The expression of the wave function ¢(z) as a sum of basis functions is as below:

N
n=1
The derived matrix equation:

[H] {6} = [S]u{0}

Where [H], is a matrix with the elements:

and [S], is a matrix with the elements:

Spm = /ufl(a?)um(x)dx

[H], and [S], are both of size N-by-N. The elements of {¢}, ¢y, are the expansion coefficients of ¢(z).

code:

1 %constants

» El = —13.6;

s R= 0.074;

2+ a0 = 0.0529;

5

¢ Y%matrix elements

7 RO = R/a();

8

o a = 2xElx(1—(1+R0)*exp(—2%R0) ) /RO;
10 b = 2xE1%(14R0)*exp(—RO) ;

n s = exp(—RO)*(1+R0+(R0"2/3)) ;

13 Y%matrices
w Hu = [El + a, Elxs+b; Elxs+b, El + a];
s Su=[1, s; s, 1];

17 %find eigenvalues and eigenvectors
18 [vectors ,energies] = eig(inv(S-u)*H_u);
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The bonding and antibonding eigenenergies are ’ —32.2567eV ‘ and ’ —15.5978 eV ‘ respectively.

(ii) Neglecting normalization, we have the following expressions for ¢p(z) and ¢4 (z):

¢p(2) = ur(z) + ur(z)
da(z) =ur(z) —ugr(z).

We obtain the following plot:

35 T T
Bonding
Antibonding
Lgs 4
=
251
]
[+]
7]
§ 2f
=
£
8,
=157
=
[}
a
g 1f
a
05
0 L . . . .
-2 -15 -1 0.5 o 0.5 1 15 2

z [Angstroms]

Figure 1. non-normalized probability densities for bonding and antibonding
solutions.
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Problem 2
(@
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Figure 2. Energy vs. wave vector relationship.

(ii) Energy values from —2 eV to 2 eV are allowed.

(iii) The vector {¢}, which is of length N, and has elements n is:
{¢} — Ceik‘na

Ceika
Ceik2a

{o} =

CAeik:Na

The corresponding wave function is:

N .
o(x) = Z CetFnay,, (z)

There is one wave function and thus one energy level for each value of k. This means that there is one
electronic state per k.

(b) (@)

CAeika
OBeika
C«Aeik2a
{¢} _ CBeikQa

CAeikNa
CBeikNa

N
¢(x) = Z CAeiknaunA(x) + CBeiknaunB(m>
n=1

(iii) [h(k)] is of size 2-by-2. Thus there will be two values of E(k) for a fixed k. This also means there are
two ¢(z) for each k.
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(c)

(i)
¢2 +2¢3 + ¢4 = E¢y
01+ ¢3 + 204 = E¢o
201 + ¢2 + P4 = E¢s
O1+ 202 + 93 = E¢y

P2 +2¢3 + 0o = E¢y
1+ @3+ 204 = Edp2
2¢5 + g2 + ¢4 = E¢3
¢5 + 206 + ¢3 = By

(iii) A generalized form of the nth equation is:

E¢n = ¢n—1+ Gnt1 + 20042
(iv)
ECehna — Ceikn+Da 4 Gik(n=1a | o0 ik(nt2)a
E = eika T e*’ik‘a 4 2€2ika

B(k) = 2¢** 4 2 cos(ka) (1)
(v) Imposing the repeating boundary conditions ¢, 4 = ¢,, We obtain the following relationship:

Ceikna — C«eik(n+4)a

1= ei4ka

For this to hold, 4ka must be some multiple of 27, and this mean k = - - integer.

.

(vi) Using the E-k relationship from equation 1, we know that k must always be real, so the 2 cos(ka) portion
of the E-k relationship must be real. As well, if we substitute in the equation for & we obtained in part (v),
we get the following (partial) expression:

26i2ka _ 26iﬂ~integer

Which we know will always be real (with a value of £2).

(vii) Since €™ = 1, we have:
Gl + %77) _ iR ZE) A _ ik
Onll+20) = 6 (k).
Therefore wavefunctions for which k is separated by %’T are equivalent, and we only need consider the
range k € [T, 7],
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Problem 3

(a)  Given the geometry and interaction rules stated, the interaction matrices [H],, are zero except for

(H] = [Eo tzl

t; Ep
_lta O
Hlume =[5 1)

where mx* corresponds to any of the four nearest neighbor square-shaped unit cells to cell n. For cell n, let
cell a be above, cell b be to the right, cell ¢ be below, and cell d be to the left. Given that each cell is spaced
a length a apart, the associated phase factors for nonzero Hy,,,, e (dm—dn) are then:

(n): 1

(a): ethve
(b): eikea
(c): e hue
(d): e e

with k = k,2 + kyy. The Bloch matrix then follows:

()] = S [H] e ® (=)

_ EO + tA (ezkma + e—ikma + eikya + e—ikya) tz

— tl EO + tB (eikwa + e*ikwa + eikya + efik?ya)
| Eo + 2ta (cos(kga) + cos(kya)) t;

n t; Ey + 2tp (cos(kya) + cos(kya))

(b) To find the E-k relationship in terms of cosine functions, we must first find ho in terms of trigonometric
functions. We will require the following trigonometric identities to do so:

sin(a & ) = sin(«) cos(3) = sin(S) cos(a) (2)
cos(a £ ) = cos(a) cos(B) F sin(a) sin(a) (3)
1 = sin(0) cos?(6), 4)

as well as the following general sine/cosine properties:

cos(0) = cos(—0)
sin(f) = — sin(—0). 5)

First we can rewrite the exponentials in hy using Euler’s identity:

ho = —tc (1 4 cos(—kza — kyb) + isin(—kga — kyb) + cos(—kza + kyb) + isin(—kza + kyb))
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Using identities (2) and (3), we can expand this relationship further.

ho = —t + ¢(1 + cos(—kya) cos(—kyb) — sin(—kya) sin(—kyb) + isin(—k,a) cos(—kyb) + i sin(—kyb) cos(—kya)
+ cos(kyb) cos(kya) + sin(kyb) sin(kya) + isin(kyb) cos(kya) — isin(kya) cos(kyb))

Here we can use the properties from (5) to reduce this equation. Since \h0|2 = hohg, we also obtain a simple
expression for hg.

ho = —t. (1 4 2cos(kya) cos(kyb) — 2isin(kya) cos(kyb))
hy = —te (1 + 2 cos(kga) cos(kyb) + 2isin(kza) cos(kyb))

We can now find |ho|” = hohf:

hohg = 1+ 4 cos(kya) cos(k,b) + 4 cos? (k,b)

From this, we can finally obtain an expression for E(E)

E(k) = Ey + tc\/l + 4 cos(kya) cos(kyb) + 4 cos?(kyb) (6)
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Problem 4

(a)

(b)

(c)

We can substitute (from the assignment) equation (24) into equation (23):

Zlhgck( Y () e—THERI/ME ch VHod(x)e = E®)/nl o

k

+zck () ®

We can partially evaluate the derivative on the left hand side:

2 cxon(pye 2@ e = 08 gyt Lo 1) (k) g )= 1P

Expanding the rightmost term out into the summation, we get the expression Sw k() E(k) gy (x)e 1EE)/RIE,

Since Ho¢r(x) = E(k)dr(z), we can see that this cancels out the term with Hy in our first substition (8), and
we get the final differential equation:

> ekt (@, 1) (x)e 1EWM Zhack ()1

k
—q aC
[/ 1., (2)Us (@, 8)dx () d } [B(k)/h]t _ k( U o7, (2)bn(a dx} i (k) /Rt
i[E(k)/R]t 5Ck —i[E(k)/h]t
ch(t)fkfke Z ih %
k
Z Ck(t)fkfke*i[E(k)/h]t _ iha%t()efi[E(k)/h]t
k

where I}, sk 18 as defined in the assignment and dy, k18 the Kronecker delta.

Starting with the initial equation

0 ,
ch kake E(k)/hlt =1h 76168;( )e*Z[E(kf)/h]t

Since we approximated that ¢y = 1 only when k& = k; and is 0 otherwise, we can simplify the sum on the left
hand side to a single element, and divide out the exponentials.

E(ki)+E(kg) /Bt _ ack(t)

I i[—
kyki €' ot

Defining a new symbol A = [E(ky) — E(k;)]/h, we can simplify the equation to its final form.
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(d)

j L Oc(t)
A k
I €™ =ih o
ackf (t) 1 A
= —7 . At
ot ih kfkl/e
1 1,
s (t) = %kakimelAt +C
1 . 1 . .
Chk (t) = %kakiezAt/2 |:iAezAt/2 +Ce At/2:|

Let C = —-. We then have:

iA”

1 ) 1 ) .
cr, (t) = %kakfzemt/zf |:e7,At/2 e At/2:|
1 At/2Sin(At/2)
iy (1) = gm0

(e) To generate the points, we used a simple MATLAB script:

© w N o o A W N e

e e s
L2 S S R )

[
o

17

% Parameters to change
ND = 4.7elb;
NA = 1.6el5;

% Logarithmic tick marks

T=[567289 10 20 30 40 50 60 70 80 90 100 200 300 I;
gamma = 1.057e7 x T / sqrt(N.D — N_A);

mu_n_first = 21.15e17 * (T.7(3/2) / (ND + NA));
mu-n_last = (log(l + gamma."2) — (gamma."2 ./ (1 + gamma."2)));

mun = mu_-n_first ./ mu.n_last;
for n =1 : length(T)
fprintf ("T = %dK: %f\n”, T(n), mun(n));

end

Plotting on the provided graph, gives the following;:
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Figure 3. Graph of electron mobility in GaAs.

It’s clear that our calculated results match up well with the theoretical results.
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