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Problem 1

(a) (i) The matrix equation is
[Ĥ] {φ} = E {φ} ,

where [Ĥ] is an N -by-N matrix with [Ĥ]nm = 0 except for the following elements:

[Ĥ]nn = 2t0 + Un

[Ĥ]n,n±1 = −t0
[Ĥ]0,N = [Ĥ]N,0 = −t0,

with t0 = ~2/(2ma2) and Un = U(na). The N -vector {φ} has elements φn which each represent the value
of the eigenvector at the point na = xn.

(ii) The expression of the wave function φ(x) as a sum of basis functions is as below:

φ(x) =

N∑
n=1

φnun(x)

The derived matrix equation:

[Ĥ]u{φ} = [S]u{φ}

Where [Ĥ]u is a matrix with the elements:

Hnm =

∫
u∗n(x)Ĥum(x)dx

and [S]u is a matrix with the elements:

Snm =

∫
u∗n(x)um(x)dx

[Ĥ]u and [S]u are both of size N -by-N . The elements of {φ}, φn, are the expansion coefficients of φ(x).

(b) (i) code:

1 %constant s
2 E1 = =13.6;
3 R = 0 . 0 7 4 ;
4 a0 = 0 . 0 5 2 9 ;
5

6 %matrix e lements
7 R0 = R/a0 ;
8

9 a = 2*E1*(1=(1+R0) *exp(=2*R0) ) /R0 ;
10 b = 2*E1*(1+R0) *exp(=R0) ;
11 s = exp(=R0) *(1+R0+(R0ˆ2/3) ) ;
12

13 %matr i ce s
14 H u = [ E1 + a , E1* s+b ; E1* s+b , E1 + a ] ;
15 S u = [ 1 , s ; s , 1 ] ;
16

17 %f i n d e i g e n v a l u e s and e i g e n v e c t o r s
18 [ vector s , e n e r g i e s ] = e i g ( inv ( S u ) *H u ) ;
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The bonding and antibonding eigenenergies are −32.2567 eV and −15.5978 eV respectively.

(ii) Neglecting normalization, we have the following expressions for φB(z) and φA(z):

φB(z) = uL(z) + uR(z)

φA(z) = uL(z)− uR(z).

We obtain the following plot:

Figure 1. non-normalized probability densities for bonding and antibonding
solutions.
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Problem 2

(a) (i)

Figure 2. Energy vs. wave vector relationship.

(ii) Energy values from −2 eV to 2 eV are allowed.

(iii) The vector {φ}, which is of length N , and has elements n is:

{φ} = Ceik·na

{φ} =


Ceika

Ceik2a

...
CAe

ikNa


The corresponding wave function is:

φ(x) =

N∑
n=1

Ceik·naun(x)

There is one wave function and thus one energy level for each value of k. This means that there is one
electronic state per k.

(b) (i)

{φ} =



CAe
ika

CBe
ika

CAe
ik2a

CBe
ik2a

...
CAe

ikNa

CBe
ikNa


(ii)

φ(x) =

N∑
n=1

CAe
iknaunA(x) + CBe

iknaunB(x)

(iii) [h(k)] is of size 2-by-2. Thus there will be two values of E(k) for a fixed k. This also means there are
two φ(x) for each k.
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(c) (i)

φ2 + 2φ3 + φ4 = Eφ1

φ1 + φ3 + 2φ4 = Eφ2

2φ1 + φ2 + φ4 = Eφ3

φ1 + 2φ2 + φ3 = Eφ4

(ii)

φ2 + 2φ3 + φ0 = Eφ1

φ1 + φ3 + 2φ4 = Eφ2

2φ5 + φ2 + φ4 = Eφ3

φ5 + 2φ6 + φ3 = Eφ4

(iii) A generalized form of the nth equation is:

Eφn = φn−1 + φn+1 + 2φn+2

(iv)

ECeikna = Ceik(n+1)a + Ceik(n−1)a + 2Ceik(n+2)a

E = eika + e−ika + 2e2ika

E(k) = 2e2ika + 2 cos(ka) (1)

(v) Imposing the repeating boundary conditions φn+4 = φn, We obtain the following relationship:

Ceikna = Ceik(n+4)a

1 = ei4ka

For this to hold, 4ka must be some multiple of 2π, and this mean k = π
2a · integer.

(vi) Using the E-k relationship from equation 1, we know that k must always be real, so the 2 cos(ka) portion
of the E-k relationship must be real. As well, if we substitute in the equation for k we obtained in part (v),
we get the following (partial) expression:

2ei2ka = 2eiπ·integer

Which we know will always be real (with a value of ±2).

(vii) Since e2πn = 1, we have:

φn(k +
2π

a
) = Cei(k+

2π
a )·nA = Ceik·nA

φn(k +
2π

a
) = φn(k).

Therefore wavefunctions for which k is separated by 2π
a are equivalent, and we only need consider the

range k ∈ [−πa ,
π
a ].
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