\documentclass{article} \usepackage{graphicx} \usepackage{caption} \usepackage{setspace} \usepackage{listings} \usepackage{color} \usepackage{amsmath} \usepackage{amssymb} \usepackage{float} \usepackage[justification=centering]{caption} \usepackage{subcaption} \usepackage[margin=0.75in]{geometry} \usepackage[parfill]{parskip} \usepackage{fancyhdr} \usepackage{titlesec} \usepackage{lipsum} \usepackage{enumitem} \usepackage{cancel} \usepackage{siunitx} \usepackage{adjustbox} \titleformat{\subsection}[runin]{\normalfont \large \bfseries} {\thesubsection}{1em}{} \captionsetup[figure]{width=0.75\textwidth,labelfont=normalfont,font=it,labelsep=period} \DeclareMathOperator*{\sinc}{sinc} \DeclareMathOperator*{\rect}{rect} \renewcommand{\thesubsection}{\indent(\alph{subsection})} \definecolor{dkgreen}{rgb}{0,0.6,0} \definecolor{gray}{rgb}{0.5,0.5,0.5} \definecolor{mauve}{rgb}{0.58,0,0.82} \definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue \definecolor{mylilas}{RGB}{170,55,241} \lstset{language=Matlab,% %basicstyle=\color{red}, breaklines=true,% morekeywords={matlab2tikz}, keywordstyle=\color{blue},% morekeywords=[2]{1}, keywordstyle=[2]{\color{black}}, identifierstyle=\color{black},% stringstyle=\color{mylilas}, commentstyle=\color{mygreen},% showstringspaces=false,%without this there will be a symbol in the places where there is a space numbers=left,% numberstyle={\tiny \color{black}},% size of th_sume numbers numbersep=9pt, % this defines how far the numbers are from the text emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise %emph=[2]{word1,word2}, emphstyle=[2]{style}, xleftmargin=2em } %\lstset{basicstyle=\small, % keywordstyle=\color{mauve}, % identifierstyle=\color{dkgreen}, % stringstyle=\color{gray}, % numbers=left, % xleftmargin=5em % } \newcommand{\angstrom}{\textup{\AA}} \title{ECE 456 - Problem Set 3 (Part 1)} \date{2021-03-31} \author{David Lenfesty \\ lenfesty@ualberta.ca \and Phillip Kirwin \\ pkirwin@ualberta.ca} \pagestyle{fancy} \fancyhead[L]{\textbf{ECE 456} - Problem Set 3 (Part 1)} \fancyhead[R]{David Lenfesty and Phillip Kirwin} \fancyfoot[C]{Page \thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} \begin{document} \doublespacing \maketitle \thispagestyle{empty} \singlespacing \newpage \section*{Problem 1} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %1a \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1bi The matrix equation is \begin{equation*} [\hat{H}]\left\{\phi\right\} = E \left\{\phi\right\}, \end{equation*} where \([\hat{H}]\) is an \(N\)-by-\(N\) matrix with \([\hat{H}]_{nm} = 0\) except for the following elements: \begin{align*} &[\hat{H}]_{nn} = 2t_0 + U_n \\ &[\hat{H}]_{n,n \pm 1} = -t_0 \\ &[\hat{H}]_{0,N} = [\hat{H}]_{N,0} = -t_0, \end{align*} with \(t_0 = \hbar^2/(2ma^2)\) and \(U_n = U(na)\). The \(N\)-vector \(\left\{\phi\right\}\) has elements \(\phi_n\) which each represent the value of the eigenvector at the point \(na = x_n\). \item %1bii The expression of the wave function \( \phi (x) \) as a sum of basis functions is as below: \begin{equation*} \phi (x) = \sum _{n = 1} ^{N} \phi _n u_n(x) \end{equation*} The derived matrix equation: \begin{equation*} [\hat{H}] _u \{ \phi \} = [S]_u \{ \phi \} \end{equation*} Where \( [\hat{H}]_u \) is a matrix with the elements: \begin{equation*} H_{nm} = \int u _n ^* (x) \hat{H} u_m(x) dx \end{equation*} and \( [S]_u \) is a matrix with the elements: \begin{equation*} S_{nm} = \int u _n ^* (x) u_m(x) dx \end{equation*} \([\hat{H}]_u\) and \([S]_u\) are both of size \(N\)-by-\(N\). The elements of \(\left\{\phi\right\}\), \(\phi_n\), are the expansion coefficients of \(\phi(x)\). \end{enumerate} \item %1b \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1bi code: \begin{lstlisting} %constants E1 = -13.6; R = 0.074; a0 = 0.0529; %matrix elements R0 = R/a0; a = 2*E1*(1-(1+R0)*exp(-2*R0))/R0; b = 2*E1*(1+R0)*exp(-R0); s = exp(-R0)*(1+R0+(R0^2/3)); %matrices H_u = [E1 + a, E1*s+b; E1*s+b, E1 + a]; S_u = [1, s; s, 1]; %find eigenvalues and eigenvectors [vectors,energies] = eig(inv(S_u)*H_u); \end{lstlisting} The bonding and antibonding eigenenergies are \(\boxed{\SI{-32.2567}{eV}}\) and \(\boxed{\SI{-15.5978}{eV}}\) respectively. \item %1bii Neglecting normalization, we have the following expressions for \(\phi_B(z)\) and \(\phi_A(z)\): \begin{align*} \phi_B(z) = u_L(z) + u_R(z) \\ \phi_A(z) = u_L(z) - u_R(z). \end{align*} We obtain the following plot: \begin{minipage}[t]{\linewidth} \centering \adjustbox{valign=t}{ \includegraphics[width=0.5\textwidth]{q1bii.png} } \captionof{figure}{non-normalized probability densities for bonding and antibonding solutions.} \end{minipage} \end{enumerate} \end{enumerate} \newpage \section*{Problem 2} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %2a \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %2ai \begin{minipage}[t]{\linewidth} \centering \adjustbox{valign=t}{ \includegraphics[width=0.5\textwidth]{q2ai.png} } % TODO still don't like this caption \captionof{figure}{Energy vs. wave vector relationship (note: not discretized to account for N)} \end{minipage} \item %2aii Energy values from \( -2 \) eV to \(2\) eV are allowed. \item %2aiii The vector \( \{ \phi \} \), which is of length \( N \), and has elements \( n \) is: \begin{equation*} \{ \phi \} = C e ^{ i k \cdot n a } \end{equation*} The corresponding wave function is: \begin{equation*} \phi (x) = \sum _ {n = 1} ^ N C e ^ { i k \cdot n a } u_n (x) \end{equation*} There is one wave function and thus one energy level for each value of \( k \). This means that there is one electronic state per \( k \). \end{enumerate} \item %2b \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %2bi \begin{align*} \left\{\phi\right\} = \begin{bmatrix} C_Ae^{ika} \\ C_Be^{ika} \\ C_Ae^{ik2a} \\ C_Be^{ik2a} \\ \vdots \\ C_Ae^{ikNa} \\ C_Ae^{ikNa} \end{bmatrix} \end{align*} \item %2bii \begin{equation*} \phi(x) = \sum_{n=1}^{N} C_Ae^{ikna} u_{nA}(x) + C_Be^{ikna} u_{nB}(x) \end{equation*} \item %2biii \([h(k)]\) is of size 2-by-2. Thus there will be two values of \(E(k)\) for a fixed \(k\). This also means there are two \(\phi(x)\) for each \(k\). \end{enumerate} \item %2c \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %2ci \begin{align*} \phi _2 + 2 \phi _3 + \phi _4 &= E \phi_1 \\ \phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\ 2 \phi _1 + \phi _2 + \phi _4 &= E \phi_3 \\ \phi _1 + 2 \phi _2 + \phi _3 &= E \phi_4 \\ \end{align*} \item %2cii \begin{align*} \phi _2 + 2 \phi _3 + \phi _0 &= E \phi_1 \\ \phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\ 2 \phi _5 + \phi _2 + \phi _4 &= E \phi_3 \\ \phi _5 + 2 \phi _6 + \phi _3 &= E \phi_4 \\ \end{align*} \item %2ciii A generalized form of the $n$th equation is: \begin{equation*} E \phi_n = \phi_{n-1} + \phi_{n+1} + 2 \phi_{n+2} \end{equation*} \item %2civ \begin{align} E C e ^{ikna} &= Ce ^ {ik (n + 1)a} + Ce^{ik (n - 1)a} + 2 Ce^{ik (n + 2)a} \nonumber \\ E &= e^{ika} + e^{-ika} + 2 e^{2ika} \nonumber \\ E(k) &= 2 e^{2ika} + 2\cos(ka) \label{eq:e_k} \end{align} \item %2cv Imposing the repeating boundary conditions \( \phi _{n + 4} = \phi _{n} \), We obtain the following relationship: \begin{align*} Ce^{ikna} &= Ce^{ik(n+4)a} \\ 1 &= e^{i4ka} \end{align*} For this to hold, \(4ka\) must be some multiple of \(2 \pi \), and this mean \( k = \frac{\pi}{2a} \cdot integer \). \item %2cvi Using the E-k relationship from equation \ref{eq:e_k}, we know that \( k \) must always be real, so the \( 2\cos(ka) \) portion of the E-k relationship must be real. As well, if we substitute in the equation for \( k \) we obtained in part \nolinebreak (v), we get the following (partial) expression: \begin{equation*} 2e^{i2ka} = 2 e^{i\pi \cdot integer} \end{equation*} Which we know will always be real (with a value of \( \pm 2 \)). \item %2cvii Since \(e^{2\pi n} = 1\), we have: \begin{align*} \phi_n(k+\frac{2\pi}{a}) &= Ce^{i(k+\frac{2\pi}{a} \cdot nA} = Ce^{i(k \cdot nA} \\ \phi_n(k+\frac{2\pi}{a}) &= \phi_n(k). \end{align*} Therefore wavefunctions for which \(k\) is separated by \(\frac{2\pi}{a}\) are equivalent, and we only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\). \end{enumerate} \end{enumerate} \end{document}