clear all; %physical constants in MKS units hbar = 1.054e-34; q = 1.602e-19; m = 9.110e-31; %generate lattice N = 100; %number of lattice points n = [1:N]; %lattice points a = 1e-10; %lattice constant x = a * n; %x-coordinates t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor L = a * (N+1); %total length of consideration %set up Hamiltonian matrix U = 0*x; %0 potential at all x main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix % Modify hamiltonian for circular boundary conditions H(1, N) = -t0; H(N, 1) = -t0; [eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each column is an eigenvector %"E_diag" is a diagonal matrix where the %corresponding eigenvalues are on the %diagonal. E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues % return eigenvectors for the 1st and 50th eigenvalues phi_4 = eigenvectors(:,4); phi_5 = eigenvectors(:,5); % find the probability densities of position for 1st and 50th eigenvectors P_4 = phi_4 .* conj(phi_4); P_5 = phi_5 .* conj(phi_5); % Find first N analytic eigenvalues E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (2*m*L^2); % Plot the probability densities for 1st and 50th eigenvectors figure(1); clf; h = plot(x,P_4,'kx',x,P_5,'k-'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]'); legend('n=4','n=5'); % Plot numerical eigenvalues figure(2); clf; h = plot(n,E_col,'kx'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]');