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clear all;

Y%physical constants in MKS units
hbar = 1.054e—34;

q= 1.602e—19;

m= 9.110e—31;

%generate lattice

N = 100; Ymumber of lattice points

n = [1:N]; P%lattice points

a = le—10; %lattice constant

X = a % n; Y%x—coordinates

t0 = (hbar"2)/(2xmxa"2)/q; Y%encapsulating factor

L =a x (N+1); %total length of consideration

%set up Hamiltonian matrix

U = 0*x; %0 potential at all x

main_diag = diag(2*xt0Oxones(1,N)4U,0); %create main diagonal matrix
lower_diag = diag(—tO%ones(1,N—1),—1); %create lower diagonal matrix

upper_diag = diag(—tO*ones(1,N—1),41); %create upper diagonal matrix
H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix

[eigenvectors ,E_diag] = eig(H); % eigenvectors” is a matrix wherein each
%column is an eigenvector
%’ E_diag” is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal .

E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues

% return eigenvectors for the 1st and 50th eigenvalues

phi_1 = eigenvectors(:,1);
phi_50 = eigenvectors (:,50);
% find the probability densities of position for 1st and 50th eigenvectors
P_1 = phi_1 .x conj(phi-1);

P_50 = phi_50 .% conj(phi_50);

% Find first N analytic eigenvalues

E_col.analytic = (1/q) * (hbar"2 % pi"2 % n.xn) / (2xmxL"2);

% Plot the probability densities for 1st and 50th eigenvectors

figure (1); clf; h = plot(x,P_.1, kx’,x,P.50, k-");

grid on; set(h, linewidth’ ,[2.0]); set(gca, Fontsize [[18]);
xlabel ("POSITION [m]’); ylabel (’PROBABILITY DENSITY [1/m]’);
legend ('n=1", ' n=50");
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(b)

54

PROBABILITY DENSITY [1/m]

% Plot numerical eigenvalues

figure (2); clf; h = plot(n,E_col, 'kx’); grid on;
set (h, "linewidth’ ,[2.0]); set(gca, Fontsize ,[18]);
xlabel ( 'EIGENVALUE NUMBER') ; ylabel (’ENERGY [eV]');
axis ([0 100 0 40]);

% Add analytic eigenvalues to above plot

hold on;
plot (n,E_col_analytic, 'k—");
legend ({ 'Numerical , " Analytical '}, Location’, "northwest ') ;
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0.015 =30/
o,
=
0.01 O 20
o
L
=
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0w ' ' ‘ ' y 0 ‘ ' ' '
0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
POSITION [m] %1078 EIGENVALUE NUMBER
(a) (b)

Figure 1. (a) Probability densities for n =1 and n = 50. (b) Comparison of first
101 numerical and analytic eigenvalues.

The analytical solution is:

¢(x) = Asin (%Tx) (1)

In order to normalise this equation it must conform to the following:

L
| P e =1, )
0
We use the following identity:
/sin2 (az) dz = lx _ 1 sin (2ax) (3)
2 da '

Given that the sine of a real value is always real, we can disregard the norm operation, and directly relate
(1) to the above identity. Evaluating the integral gives us the following relationship:

1 1 L . 2 1 L
AQQLMZAJFM

From this, we find:
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(c)

2
A=4/—.
L

(if) Starting with the normalization condition for the numerical case:

N
az &) =a (4)
=1

N nmw 2
aZ‘Bsin (f(ﬂ[)’ =a,
=1

recalling that = af, and allowing a — 0, while holding L constant, implies that N — oo, since a =
An integral is defined as the limit of a Riemann sum as follows:

L
5

d n
[ f@de = tm 3" Ac fa), (5)
¢ i=1

where Az = %=¢ and z; = ¢+ Az -i. Inour case, n = N, i=/{,¢c=0,d =L, and Az = a, z; = z,
fz) = ‘Bsin (”—L"x) ‘2. Therefore we can write

L nw \|? al nmw 2
/ ‘Bsin (—m)‘ dr = lim a - )Bsin <—xl)‘ =a.
0 L N—o0 — L

Using (3), we have

This means that B must be

From the base form of ¢y = Bsin ( ”—L’Taé), we can see that ¢,41 and ¢¢_1 correspond to the trigonometric
identities sin (a + B) = sin (a) cos (B) + cos (a) sin (B) and sin (a + B) = sin (a) cos (B) + cos (a) sin (B),
respectively, where a = %‘le and B = #7*.

Plugging these identities into equation (7) from the assignment and simplifying, we get to this equation:

. [ nmal . (nmal
—toB sin <L> + 2tgdy — tgsin ( T >

At this point, we notice that ¢, = Bsin ("—Lﬂaf), so we can factor it out.

With some minor rearranging, this leaves us with the final expression for E:

nmwa

E = 2t (1 — cos (T)) . (6)
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(i)
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Figure 2. Comparison between analytical result and numerical result. Above
n = 50, the results diverge substantially.

We can see here that the ”predicted” numerical response matches nearly exactly the actual calculated
numerical solution.

(iii) Applying the approximation cos (6) ~ 1 — % for small 8 on equation (6), we get the following expression:

n27r2a2

We can get our final analytical expression for E by fully substituting the explicit form of #g:

h2n2n?
- 2mL? (7)

(iv) With the decreased lattice spacing and increased number of points we can see the numerical solution
more closely matches the analytical solution. As well, the n = 50 case is now a constant-amplitude wave,
which corresponds to the expected analytic result, in contrast to the plot in section (a), which has a
low-frequency envelope around it.

— -3
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(a) (b)

Figure 3. (a) Probability densities for n =1 and n = 50. (b) Comparison of
first 101 numerical and analytic eigenvalues.

(d) (i) Inorder to modify the computations to those for a particle in a "ring” we simply had to add —ty elements
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as the "corner” elements of the hamiltonian operator array:
1 % Modify hamiltonian for circular boundary conditions
: H(1, N) = —t0;
s H(N, 1) = —t0;

£0.025 15 ‘ fw
=
> 0.02 _ 2
% > >
Z 0.015 2 10 .
> o
a) & I
2 0.01 o 2z
o) »
2 0.005 %
S M
o 0 0 |
o 0 0.5 1 0 50 100
POSITION [m] 4108 EIGENVALUE NUMBER
(a) (b)

Figure 4. (a) Probability densities for n =4 and n = 5. (b) Comparison of
first 101 numerical and analytic eigenvalues.

(ii) The energy levels for eigenvalues number 4 and 5 are both | 0.06 eV | These eigenstates are degenerate
because they both have the same eigenvalue/energy.

(iii)

Figure 5. Sketch of degenerate energy levels. In the sketch, closely-spaced
levels are in fact degenerate.

(iv) Plugging the valid levels for n into equation (10) from the assignment (and dividing by the requisite ¢),
we get energy levels of 0 eV, 0.0147 eV, and 0.0589 eV for the indices n = 0, 1, and 2, respectively. These
match within an acceptable margin to the numerical results from part (ii).

Page 6



ECE 456 - Problem Set 2

Problem 2

(a) Since tg =

2ma2, and U; = 4mon 4 L (lz;;ll)h the middle diagonal elements will have values
- h? q° lo(lo + 1)A?
Hy=—5 - 7
ma 4megr; 2mr;

and the upper and lower diagonals elements will have values

h2

Hyg1) = T oma?

(b) Homogenous boundary conditions imply that the corner entries of H will be @
(¢) Code:
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clear all;
Y%physical constants in MKS units

hbar = 1.054e—34;

q = 1.602e—19;

m= 9.110e—31;
epsilon_0 = 8.854e—12;

%generate lattice

N = 100; Ymumber of lattice points

n = [1:N]; %lattice points

a = 0.1e—10; %lattice constant

r = a % n; Y%x—coordinates

t0 = (hbar”"2)/(2xmxa"2)/q; %encapsulating factor

L =a x (N+1); %total length of consideration

%set up Hamiltonian matrix

; %potential at r in [eV]

; %create main diagonal matrix
%create lower diagonal matri
; %create lower diagonal matrix
; %create upper diagonal matrix

U=—q"2./(4xpixepsilon_0.xr) * (1/q
main_diag = diag(Q*tO*ones( )+U O
lower_diag = diag(—tO%ones(1,N—1),—

upper_diag = diag(—tO*ones(1,N—1)

H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix
[eigenvectors ,E_diag] = eig(H); % eigenvectors” is a matrix wherein ecach
column is an eigenvector
%" E_diag” is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal .
E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues

% return eigenvectors for the 1st and 50th eigenvalues

phi_1 = eigenvectors (:,1);
phi_2 = eigenvectors (:,2);
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PROBABILITY DENSITY [1/m]

(d) For the 1s level,

% find the probability densities of position for 1st and 50th eigenvectors

phi_1 .x conj(phi_1);
phi_2 .% conj(phi_2);

P_1
P_2
% Plot the probability densities for 1st and 2nd eigenvectors

figure (1); clf; h = plot(r,P.1, k-");

grid on; set(h, linewidth’ ,[2.0]); set(gca, Fontsize ,[18]);
xlabel (’'RADIAL POSITION [m]’); ylabel (’PROBABILITY DENSITY [1/m]’);
yticks ([0.02 0.04 0.06 0.08 0.10 0.12]);

legend ('n=1");

axis ([0 1le—9 0 0.12]);

figure (2); clf; h = plot(r,P2, k- ");

grid on; set(h, linewidth’ ,[2.0]); set(gca, Fontsize ,[18]);
xlabel ('RADIAL POSITION [m]’); ylabel (’PROBABILITY DENSITY [1/m]’);
yticks ([0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04]);

legend ('n=2");

axis ([0 1le—9 0 0.04]);

0.12 £ 0.04
—n=1 ha I —_—n=2
ol > 0.035
= 0.03]
0.08 >
& 0.025|
0.06 | S 0.02}
0.041 5 0015
B 001
0.02 <
@ 0.005
0 02 04 06 08 1 o 0 02 04 06 08 1
RADIAL POSITION [m] s 10® RADIAL POSITION [m]x 10
(a) (b)

Figure 6. (a) 1s probability density. (b) 2s probability density.

E = -13.4978 eV |
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(e)

n? 2
2m g3/?

(

Beginning with equation (11) from the assignment, with [, = 0:

B2 2 7
- = E
{ 2m dr? 47reor] 1) f(r)
h? d? 2r q?
_ 2 | 2L /e | - E
2m dr? (ag/2 c ) 47Teorf(r) )
R? 2 d , T q>
- —rfao _ __,=7r/a0 | _ =F
2m g3/2 dr (e ao € ) 47T€0Tf(7‘) f(r)
0
1 _ 1 _ ro_ q?
e~ T/ao _ —_ p—r/ao __p-r/ao ) _ = F
ag ag € + a? € > dmeqr 1) F(r)
h? 2 1 q?
Y B T _ - B
2m ( aor a%) 1) 477607“f(r) F(r)
P2 1\ @
2m apr = ad drweor
we can eliminate r:
Y 2mg® 1 K21 @ 1
S I _F
M Are i 2mag  dmegr
2 B2 1 2
/%q/_ 5 _%: FE.
€©r 2maj €T

We can then solve for E:

EeV] = —

2 1 (1.054 x 10734 J - )2
. =[-13.6eV.
g 2(9.110 x 1073 kg)(0.0529 nm)?

Q'Wa%_

This is very similar to the result in (d).

(f)

In the figure below we can see that the numerical and analytical results agree up to scaling by a.

The

scale difference is expected, as discussed in Problem 1. From (d), we also expect agreement in the curve
shapes because the numerical and analytical energies for the 1s level are very similiar. We can see that the
peak value of the analytic result is very slightly higher than that of the numerical result, which corresponds
to the analytical result for the energy being slightly greater in magnitude (—13.6 eV versus —13.4978 eV).

© o ©
D L = N

O
o
=

——1s (numerical)
1s (analytical) | |

g

PROBABILITY DENSITY [1/m]

0

o
N

02 04

0.

08 1

RADIAL POSITION [m] «107°

Figure 7. Numerical result (black line) and analytical solution scaled by a (orange

circles).
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Problem 3

(a) Recalling the identity
(T
cosu = sin (5 + u), (8)

(b(x,)\/zsm <7r(x’—£L/2)>
oa') =| % o (). )

(b) (i) Mapping the provided Fourier identities from ¢ and w onto =’ and k', we can evaluate the Fourier transform
of ¢(z') = \/%cos (Fa') x rect (%), denoted A(k’), using the following:

()] - o ()

™

F {f(a:’) cos (zx’” = % [F(K' + k1) + F(E — k)]

we can write

Letting f(2') = /% rect (%), we can obtain
n | 2 e (E e (X —
A(K") = 5\ = 15ine { o (k" + k1) | + sinc o (K" —Fk) )¢,

(ii) Beginning with the result for A(k’) above, and writing

o(p') %A <I;;> ;

where ky = 7/ L.

we can obtain

o(p) = % % {Sinc (;h(p’ +p1)> + sinc (Qih(p’ —p1)> } :

where p; = hr/L.

(i) |®(p')|* has units of [skg~* m~1], which are those of inverse momentum. Thus, multiplication (or inte-
gration) by a differential of momentum results in a unitless probability, as we should expect. This holds
in the 1D case and can easily be generalized to higher dimensions.

(iv) sinc is a purely real function, so we can ignore taking the norm of the integrand. As well, to simplify the

intermediate equations we will define the constants A = %, / # and B = ﬁ Then we have

/ T o) dyf = / " 42 [sine (B + 1))’

— 00 — 00

+2sinc (B(p' +p1)) sine (B(p' — p1)) + sinc (B(p' —p1))*| dp.

Given property (26) of the sinc function in the assignment, we can evaluate the left and right terms to
be 1/B. Using a change of variable p” = p; — p/, and properties (27) and (28), we can further evaluate
the central cross term:
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| o= 22— [ a2 psine (B(2n - ) sine (B(-p")] o'

- AQ% - / A? [2sinc (B(2py — p"")) sine(Bp”)] dp”

2A2
=5 - A?sinc(2Bpy)

=1+ A?%sinc(1)
=[1.]

Since we obtained ®(p’) from a normalized position wave function and we have reasoned that it should
have the same properties, but with respect to momentum rather than position, it makes sense that this
normalization integral should be 1, just as it would be for the associated position wave function.

(v)

£ 12 = 24

24 %10 %15 =10

P T o

29 - ‘ >

(%] l, —_—

=2 L S 2

Z 1' \" I.IJ

) N )

|_

S ot =

w | g

p N S— - | S —
< -2 -1 0 1 2 o -2 -1 0 1 2
= o

NORMALIZED MOMENTUM [p/p. ] NORMALIZED MOMENTUM [p'/p,]

(a) (b)

Figure 8. (a) momentum wave function versus normalized momentum. (b)
Probability density versus normalized momentum.

(vi) The points of classical momentum are given by p; = +v2mFE. On the normalized plots, these occur at
+1 on the p/p; axis. Given that L = 101 A, we can find the velocity of the electron by taking v = DL

We find that |v = +3.6 x 10* m/s |
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E = 24
2 f?15><10
- 9,
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@2 510'
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prd
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O 57
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s ' 2 o *
< -2 -1 0 1 2 E‘C -2 -1 0 1 2
= o

NORMALIZED MOMENTUM [p'/p,] NORMALIZED MOMENTUM [p'/p,]

(a) (b)
Figure 9. (a),(b) Previous plots but with the classical momentum marked in
red.

(vil) From the plot of the probability density, we can clearly see that the particle can take a continuum of
momentum values. Thus the statement is false.
(c) Because the probability density is even about p’ = 0, we can surmise that | (p’) =0 |.

To verify this, we find (p') from ¢(z') = /2 sin (Fa’) X rect (%) according to

—

i}
~

=

/ Z (&) p H(') de’

—ih/LL/; \/zsin (%x') % l\/zsin (zx')l da’
7
L

—

S|
<

~

—2ixh [L/? s
' = 7/ sin (—x') cos( 9:') dx’.

Using Equation (31) in the assignment we can write

) = (529

—L/2
W) =" a-1=[0]

which verifies our above inference.

(d) The momentum associated with the wave function 0(a’) = ek'e" ig , and the corresponding value is
=]

. 0 i N N
p= —ih ezkm _ _Z2hk/ezkm :hk/elkm

Page 12



ECE 456 - Problem Set 2 David Lenfesty and Phillip Kirwin

Problem 4
(a)
£0.05
h ——Eigenvector 2
t 0.04
£ 0.06 : 5
50.057 [=Eigenvector 1] Z 0.03
- a
%0.04— > 0.02
0 0.03 _
%o.oz g 0.01
g 0.01} S 0
g ol : : - LB 4 2 0 2 4
POSITION [m] 41070 POSITION [m] 107

(a) (b)
Figure 10. Probability densities versus position for first two energy levels.

An a value of was chosen in order to provide an adequately shaped graph without sacrificing too
much computation time and to ensure that the first two numerical energies correspond to the given exper-
imental results. The experimental results are 0.14395eV and 0.43185eV for the first and second energy
levels respectively, and the numerical results with our chosen a are 0.14386eV and 0.43140eV, which are in
agreement.

(b) (i) The energies used were 0.14395eV and 0.43185—0.1eV for the first and second energy levels, respectively.

%1077

2

CURRENT [A]
N o

IN

-6 . .
-0.5 0 0.5 1

DRAIN VOLTAGE [V]

Figure 11. Current-voltage characteristic of a 2-level molecule.

(ii) Between 0V and 0.25V, only the first energy level is carrying any current. This current drops to 0 above
0.25V because the coupling between the contacts and that energy level drops to 0, meaning no electrons
can transfer.

Between 0.4V and 0.65V, only the second energy level is carrying current. This energy level stops
conducting current above 0.65V because its shifted energy drops below the threshold where the contacts
have any coupling with it.

(iii) Negative differential resistance is present in this design from a Vp of approximately 0.27V to 0.45V, as
well as from 0.65V to 0.8 V.
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