\documentclass{article} \usepackage{graphicx} \usepackage{setspace} \usepackage{listings} \usepackage{color} \usepackage{amsmath} \usepackage{amssymb} \usepackage{float} \usepackage[justification=centering]{caption} \usepackage{subcaption} \usepackage[margin=0.75in]{geometry} \usepackage[parfill]{parskip} \usepackage{fancyhdr} \usepackage{titlesec} \usepackage{lipsum} \usepackage{enumitem} \titleformat{\subsection}[runin]{\normalfont \large \bfseries} {\thesubsection}{1em}{} \renewcommand{\thesubsection}{\indent(\alph{subsection})} \definecolor{dkgreen}{rgb}{0,0.6,0} \definecolor{gray}{rgb}{0.5,0.5,0.5} \definecolor{mauve}{rgb}{0.58,0,0.82} \definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue \definecolor{mylilas}{RGB}{170,55,241} \lstset{language=Matlab,% %basicstyle=\color{red}, breaklines=true,% morekeywords={matlab2tikz}, keywordstyle=\color{blue},% morekeywords=[2]{1}, keywordstyle=[2]{\color{black}}, identifierstyle=\color{black},% stringstyle=\color{mylilas}, commentstyle=\color{mygreen},% showstringspaces=false,%without this there will be a symbol in the places where there is a space numbers=left,% numberstyle={\tiny \color{black}},% size of th_sume numbers numbersep=9pt, % this defines how far the numbers are from the text emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise %emph=[2]{word1,word2}, emphstyle=[2]{style}, xleftmargin=2em } %\lstset{basicstyle=\small, % keywordstyle=\color{mauve}, % identifierstyle=\color{dkgreen}, % stringstyle=\color{gray}, % numbers=left, % xleftmargin=5em % } \title{ECE 456 - Problem Set 2} \date{2021-03-01} \author{David Lenfesty \\ lenfesty@ualberta.ca \and Phillip Kirwin \\ pkirwin@ualberta.ca} \pagestyle{fancy} \fancyhead[L]{\textbf{ECE 456} - Problem Set 2} \fancyhead[R]{David Lenfesty and Phillip Kirwin} \fancyfoot[C]{Page \thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} \begin{document} \doublespacing \maketitle \thispagestyle{empty} \singlespacing \newpage hello \section*{Problem 1} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %1a Code: \begin{lstlisting}[language=Matlab] clear all; %physical constants in MKS units hbar = 1.054e-34; q = 1.602e-19; m = 9.110e-31; %generate lattice N = 100; %number of lattice points n = [1:N]; %lattice points a = 1e-10; %lattice constant x = a * n; %x-coordinates t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor L = a * (N+1); %total length of consideration %set up Hamiltonian matrix U = 0*x; %0 potential at all x main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix [eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each %column is an eigenvector %"E_diag" is a diagonal matrix where the %corresponding eigenvalues are on the %diagonal. E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues % return eigenvectors for the 1st and 50th eigenvalues phi_1 = eigenvectors(:,1); phi_50 = eigenvectors(:,50); % find the probability densities of position for 1st and 50th eigenvectors P_1 = phi_1 .* conj(phi_1); P_50 = phi_50 .* conj(phi_50); % Find first N analytic eigenvalues E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (2*m*L^2); % Plot the probability densities for 1st and 50th eigenvectors figure(1); clf; h = plot(x,P_1,'kx',x,P_50,'k-'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]'); legend('n=1','n=50'); % Plot numerical eigenvalues figure(2); clf; h = plot(n,E_col,'kx'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]'); axis([0 100 0 40]); % Add analytic eigenvalues to above plot hold on; plot(n,E_col_analytic,'k-'); legend({'Numerical','Analytical'},'Location','northwest'); \end{lstlisting} % \begin{figure}[H] \centering \begin{subfigure}{0.4\linewidth} \centering \includegraphics[width=\textwidth]{q1a_1and50.png} \caption{probability densities for \(n=1\)\\and \(n=50\).} \label{fig:q3_ne} \end{subfigure}% \begin{subfigure}{0.4\linewidth} \centering \includegraphics[width=\textwidth]{q1a_eigenvals.png} \caption{Comparison of first 101 numerical and analytic eigenvalues.} \label{fig:q3_current} \end{subfigure} \end{figure} \item %1b \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1bi The analytical solution is \begin{equation} \Phi(x) = A sin \left( \frac{n \pi}{L} x \right) \label{eq:analytical} \end{equation} In order to normalise this equation it must conform to the following: \begin{equation} \int_{0}^{L} \left| \Phi(x) \right| ^2 dx = 1 \label{eq:normalise} \end{equation} Using the following identity: \begin{equation} foo \label{eq:integral_ident} \end{equation} Given that $sin$ of a real value is always real, we can disregard the norm operation, and directly relate to the above identity. Evaluating the integral gives us the following relationship \begin{equation*} \frac{1}{A^2} = \frac{1}{2} L - \frac{L}{4n \pi} sin \left( \frac{2n \pi}{L} L \right) - \frac{1}{2} \cdot 0 + \frac{L}{4n \pi} sin(0) \end{equation*} From this, we find: \begin{equation*} A = \sqrt{\frac{2}{L}} \end{equation*} \item %1bii {\em I really don't like this explanation}. The output of the numerical sum will change, as the value of $\alpha$ changes, by a factor if $\alpha$. To correct for this, we need to factor the result of the summation by $\alpha$, which corresponds to % Idk how to explain this at all, I need to chew on it internally and come back later. \begin{equation*} foo \end{equation*} This means that B must be \begin{equation*} B = \sqrt{\frac{2 \alpha}{L}} \end{equation*} \end{enumerate} \item %1c \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1ci \lipsum[1] \item %1cii \lipsum[1] \item %1ciii \lipsum[1] \item %1civ \lipsum[1] \end{enumerate} \item %1d \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1di \lipsum[1] \item %1dii \lipsum[1] \item %1diii \lipsum[1] \item %1div \lipsum[1] \end{enumerate} \end{enumerate} \section*{Problem 2} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %2a \lipsum[1] \item %2b \lipsum[1] \item %1c \lipsum[1] \item %1d \lipsum[1] \item %1e \lipsum[1] \item %1f \lipsum[1] \end{enumerate} \section*{Problem 3} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %2a \lipsum[1] \item %2b \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1di \lipsum[1] \item %1dii \lipsum[1] \item %1diii \lipsum[1] \item %1div \lipsum[1] \item %1dv \lipsum[1] \item %1dvi \lipsum[1] \item %1dvii \lipsum[1] \end{enumerate} \item %1c \lipsum[1] \item %1d \lipsum[1] \end{enumerate} \section*{Problem 4} \begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)] \item %2a \lipsum[1] \item %2b \begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)] \item %1di \lipsum[1] \item %1dii \lipsum[1] \item %1diii \lipsum[1] \end{enumerate} \end{enumerate} \end{document}