clear all; %% Constants % Physical constants hbar = 1.052e-34; q = 1.602e-19; epsilon_0 = 8.854e-12; epsilon_r = 4; mstar = 0.25 * 9.11e-31; % Single-charge coupling energy (eV) U_0 = 0.25; % (eV) kb_T = 0.025; % Contact coupling coefficients (eV) gamma_1 = 0.0005; gamma_2 = gamma_1; % Energy level E = 0.2; % Capacitive gate coefficient a_G = 0.5; % Capacitive drain coefficient a_D = 0.5; a_S = 1 - a_G - a_D; % Central energy level mu = 0; % Energy grid, from -1eV to 1eV NE = 501; E = linspace(-1, 1, NE); dE = E(2) - E(1); % Reference no. of electrons in channel N_0 = 0; fermi(-0.25, -0.2, kb_T) voltages = linspace(0, 1, 101); % Terminal Voltages V_G = 0; V_S = 0; for n = 1:length(voltages) % Set varying drain voltage V_D = voltages(n); mu_1 = mu - V_S; mu_2 = mu - V_D; % Laplace potential, does not change as solution is found (eV) U_L = -q * ((C_S*V_S + C_G*V_G + C_D*V_D) / C_E); % Poisson potential must change, assume 0 initially (eV) U_P = 0; dU_P = 1; while dU_P > 1e-6 % source Fermi function f_1 = 1 / (1 + exp((E + U_L + U_P - mu_1) / kb_T)); % drain Fermi function f_2 = 1 / (1 + exp((E + U_L + U_P - mu_2) / kb_T)); N(n) = dE * sum( ) tmpU_P = U_0 * end end %%Plotting commands