\documentclass{article} \usepackage{graphicx} \usepackage{setspace} \usepackage{listings} \usepackage{color} \usepackage{circuitikz} \usepackage{float} \definecolor{dkgreen}{rgb}{0,0.6,0} \definecolor{gray}{rgb}{0.5,0.5,0.5} \definecolor{mauve}{rgb}{0.58,0,0.82} \lstset{language=Matlab,% %basicstyle=\color{red}, breaklines=true,% morekeywords={matlab2tikz}, keywordstyle=\color{blue},% morekeywords=[2]{1}, keywordstyle=[2]{\color{black}}, identifierstyle=\color{black},% stringstyle=\color{mylilas}, commentstyle=\color{mygreen},% showstringspaces=false,%without this there will be a symbol in the places where there is a space numbers=left,% numberstyle={\tiny \color{black}},% size of the numbers numbersep=9pt, % this defines how far the numbers are from the text emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise %emph=[2]{word1,word2}, emphstyle=[2]{style}, } \title{ECE 456 - Problem Set 1} \date{2021-02-06} \author{David Lenfesty \\ lenfesty@ualberta.ca \and Phillip Kirwin \\ pkirwin@ualberta.ca} \setcounter{tocdepth}{2} % Show subsections \begin{document} \doublespacing \pagenumbering{gobble} \maketitle \newpage \singlespacing \pagenumbering{arabic} \section{Question 1} \subsection{(a)} \begin{equation} N = $\int_{-\infty}^{\infty}$ \end{equation} \section{Design Section} In order to design the desired systems, the Xilinx Vivado software was used to write VHDL code that described the operation of each circuit. \newpage \paragraph{MUX / DEMUX Circuit} To implement the multiplexing/demultiplexing system, the following circuit had to be written in VHDL. The VHDL architecture below was written to implement this circuit in hardware. \begin{lstlisting}[language=Matlab] clear all; %% Constants % Physical constants hbar = 1.052e-34; % Single-charge coupling energy (eV) U_0 = 0.25; % (eV) kBT = 0.025; % Contact coupling coefficients (eV) gamma_1 = 0.005; gamma_2 = gamma_1; gamma_sum = gamma_1 + gamma_2; % Capacitive gate coefficient a_G = 0.5; % Capacitive drain coefficient a_D = 0.5; a_S = 1 - a_G - a_D; % Central energy level mu = 0; % Energy grid, from -1eV to 1eV NE = 501; E = linspace(-1, 1, NE); dE = E(2) - E(1); % TODO name this better cal_E = 0.2; % Lorentzian density of states, normalized so the integral is 1 D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2 ); D = D ./ (dE*sum(D)); % Reference no. of electrons in channel N_0 = 0; voltages = linspace(0, 1, 101); % Terminal Voltages V_G = 0; V_S = 0; for n = 1:length(voltages) % Set varying drain voltage V_D = voltages(n); % Shifted energy levels of the contacts mu_1 = mu - V_S; mu_2 = mu - V_D; % Laplace potential, does not change as solution is found (eV) % q is factored out here, we are working in eV U_L = - (a_G*V_G) - (a_D*V_D) - (a_S*V_S); % Poisson potential must change, assume 0 initially (eV) U_P = 0; % Assume large rate of change dU_P = 1; % Run until we get close enough to the answer while dU_P > 1e-6 % source Fermi function f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT)); % drain Fermi function f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT)); % Update channel electrons against potential N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D); % Re-update Poisson portion of potential tmpU_P = U_0 * ( N(n) - N_0); dU_P = abs(U_P - tmpU_P); % Unsure why U_P is updated incrementally, perhaps to avoid oscillations? %U_P = tmpU_P; U_P = U_P + 0.1 * (tmpU_P - U_P) end % Calculate current based on solved potential. % Note: f1 is dependent on changes in U but has been updated prior in the loop I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D); end %%Plotting commands figure(1); h = plot(voltages, N,'k'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('Drain voltage [V]'); ylabel('Number of electrons'); figure(2); h = plot(voltages, I,'k'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('Drain voltage [V]'); ylabel('Current [A]'); \end{lstlisting} \end{document}