clear all; %% Constants % Physical constants hbar = 1.052e-34; q = 1.602e-19; % Single-charge coupling energy (eV) U_0 = 0.25; % (eV) kBT = 0.025; % Contact coupling coefficients (eV) gamma_1 = 0.005; gamma_2 = gamma_1; gamma_sum = gamma_1 + gamma_2; % Capacitive gate coefficient a_G = 0.5; % Capacitive drain coefficient a_D = 0.5; a_S = 1 - a_G - a_D; % Central energy level mu = 0; % Energy grid, from -1eV to 1eV NE = 501; E = linspace(-1, 1, NE); dE = E(2) - E(1); % TODO name this better cal_E = 0.2; % Lorentzian density of states, normalized so the integral is 1 D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2 ); D = D ./ (dE*sum(D)); % Reference no. of electrons in channel N_0 = 0; voltages = linspace(0, 1, 101); % Terminal Voltages V_G = 0; V_S = 0; for n = 1:length(voltages) % Set varying drain voltage V_D = voltages(n); % Shifted energy levels of the contacts mu_1 = mu - V_S; mu_2 = mu - V_D; % Laplace potential, does not change as solution is found (eV) % q is factored out here, we are working in eV U_L = - (a_G*V_G) - (a_D*V_D) - (a_S*V_S); % Poisson potential must change, assume 0 initially (eV) U_P = 0; % Assume large rate of change dU_P = 1; % Run until we get close enough to the answer while dU_P > 1e-6 % source Fermi function f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT)); % drain Fermi function f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT)); % Update channel electrons against potential N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D); % Re-update Poisson portion of potential tmpU_P = U_0 * ( N(n) - N_0); dU_P = abs(U_P - tmpU_P); % Unsure why U_P is updated incrementally, perhaps to avoid oscillations? %U_P = tmpU_P; U_P = U_P + 0.1 * (tmpU_P - U_P) end % Calculate current based on solved potential. % Note: f1 is dependent on changes in U but has been updated prior in the loop I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D); end %%Plotting commands figure(1); h = plot(voltages, N,'k'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('Drain voltage [V]'); ylabel('Number of electrons'); figure(2); h = plot(voltages, I,'k'); grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]); xlabel('Drain voltage [V]'); ylabel('Current [A]');