127 lines
3.2 KiB
Matlab
127 lines
3.2 KiB
Matlab
clear all;
|
||
|
||
% Physical constants in MKS units
|
||
|
||
hbar = 1.054e-34;
|
||
q = 1.602e-19;
|
||
|
||
% Energy parameters in eV; included are the single-electron charging
|
||
% energy U0; the kBT product; the equilibrium Fermi level mu; and the
|
||
% energy level cal_E, which is short-form for "calligraphic E"
|
||
|
||
% Please especially note that ALL ENERGY VARIABLES IN THIS CODE
|
||
% ARE IN eV (NOT joules); the equations from class must be adjusted
|
||
% accordingly, multiplying or dividing appropriate terms by a factor of q
|
||
|
||
U0 = 0.25;
|
||
kBT = 0.025;
|
||
mu = 0;
|
||
cal_E = 0.2;
|
||
|
||
% Capacitance parameters
|
||
|
||
alpha_G = 0.5;
|
||
alpha_D = 0.5;
|
||
alpha_S = 1 - alpha_G - alpha_D;
|
||
|
||
% Energy grid in eV, from -1 eV to 1 eV
|
||
|
||
NE = 501;
|
||
E = linspace(-1,1,NE);
|
||
dE = E(2) - E(1);
|
||
|
||
% Gamma parameters, in eV
|
||
|
||
gamma_1 = 0.005;
|
||
gamma_2 = 0.005;
|
||
gamma = gamma_1 + gamma_2;
|
||
|
||
% Lorentzian density of states, normalized so that its integral is unity
|
||
|
||
D = (gamma/(2*pi))./((E-cal_E).^2+(gamma/2)^2);
|
||
D = D./(dE*sum(D));
|
||
|
||
% Reference number of electrons in the channel, assumed to be zero in
|
||
% this code
|
||
|
||
N0 = 0;
|
||
|
||
% Voltage values to consider for the final plots
|
||
|
||
NV = 101;
|
||
VV = linspace(0,1,NV);
|
||
dV = VV(2) - VV(1);
|
||
|
||
% Loop over voltage values and compute number of electrons and current
|
||
% for each voltage value in a self-consistent manner
|
||
|
||
for count = 1:NV
|
||
|
||
% Set terminal voltages
|
||
|
||
VG = 0;
|
||
VD = VV(count);
|
||
VS = 0;
|
||
|
||
% Values of mu1 and mu2; notice that the usual factor of q multiplying
|
||
% the voltages is omitted, because in this code, energy is in eV
|
||
|
||
mu1 = mu - VS;
|
||
mu2 = mu - VD;
|
||
|
||
% Value of Laplace potential in eV
|
||
|
||
UL = - (alpha_G*VG) - (alpha_D*VD) - (alpha_S*VS);
|
||
|
||
% Initial value of Poisson part in eV
|
||
UP = 0;
|
||
|
||
% Iterate until self-consistent potential is achieved by monitoring
|
||
% the Poisson part (the Laplace part does not change)
|
||
|
||
dUP = 1;
|
||
while dUP > 1e-6
|
||
|
||
% Compute source and drain Fermi functions
|
||
|
||
f1 = 1./(1+exp((E + UL + UP - mu1)./kBT));
|
||
f2 = 1./(1+exp((E + UL + UP - mu2)./kBT));
|
||
|
||
% Compute number of channel electrons
|
||
|
||
N(count) = dE*sum( ((gamma_1/gamma).*f1 + (gamma_2/gamma).*f2).*D );
|
||
|
||
% Newly calculated Poisson part of self-consistent potential
|
||
|
||
UPnew = U0*( N(count) - N0 );
|
||
|
||
% Change in Poisson part between iterations
|
||
|
||
dUP = abs(UP - UPnew);
|
||
|
||
%New guess for next iteration, found by adding a fraction of the
|
||
%difference between iterations to the old guess
|
||
|
||
UP = UP + 0.1*(UPnew - UP);
|
||
|
||
end
|
||
|
||
% Compute the current in A after the self-consistent potential
|
||
% has been achieved; notice the extra factor of q preceding the
|
||
% equation, which is needed since the gammas are in eV
|
||
|
||
I(count) = q*(q/hbar)*(gamma_1*gamma_2)/(gamma)*dE*sum((f1-f2).*D);
|
||
|
||
end
|
||
|
||
% Plotting commands, including lines to modify the linewidth
|
||
% and Fontsize, just to make the plots look nicer; you don’t
|
||
% need to worry about how these work
|
||
|
||
figure(1); h = plot(VV,N,'k'); grid on;
|
||
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
|
||
xlabel('DRAIN VOLTAGE [V]'); ylabel('NUMBER OF ELECTRONS');
|
||
|
||
figure(2); h = plot(VV,I,'k'); grid on;
|
||
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
|
||
xlabel('DRAIN VOLTAGE [V]'); ylabel('CURRENT [A]'); |