501 lines
21 KiB
TeX
501 lines
21 KiB
TeX
\documentclass{article}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{caption}
|
|
\usepackage{setspace}
|
|
\usepackage{listings}
|
|
\usepackage{color}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{float}
|
|
\usepackage[justification=centering]{caption}
|
|
\usepackage{subcaption}
|
|
\usepackage[margin=0.75in]{geometry}
|
|
\usepackage[parfill]{parskip}
|
|
\usepackage{fancyhdr}
|
|
\usepackage{titlesec}
|
|
\usepackage{lipsum}
|
|
\usepackage{enumitem}
|
|
\usepackage{cancel}
|
|
\usepackage{siunitx}
|
|
\usepackage{adjustbox}
|
|
|
|
\titleformat{\subsection}[runin]{\normalfont \large \bfseries}
|
|
{\thesubsection}{1em}{}
|
|
|
|
\captionsetup[figure]{width=0.75\textwidth,labelfont=normalfont,font=it,labelsep=period}
|
|
|
|
\DeclareMathOperator*{\sinc}{sinc}
|
|
\DeclareMathOperator*{\rect}{rect}
|
|
\renewcommand{\thesubsection}{\indent(\alph{subsection})}
|
|
|
|
\definecolor{dkgreen}{rgb}{0,0.6,0}
|
|
\definecolor{gray}{rgb}{0.5,0.5,0.5}
|
|
\definecolor{mauve}{rgb}{0.58,0,0.82}
|
|
|
|
|
|
\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
|
|
\definecolor{mylilas}{RGB}{170,55,241}
|
|
|
|
|
|
\lstset{language=Matlab,%
|
|
%basicstyle=\color{red},
|
|
breaklines=true,%
|
|
morekeywords={matlab2tikz},
|
|
keywordstyle=\color{blue},%
|
|
morekeywords=[2]{1}, keywordstyle=[2]{\color{black}},
|
|
identifierstyle=\color{black},%
|
|
stringstyle=\color{mylilas},
|
|
commentstyle=\color{mygreen},%
|
|
showstringspaces=false,%without this there will be a symbol in the places where there is a space
|
|
numbers=left,%
|
|
numberstyle={\tiny \color{black}},% size of th_sume numbers
|
|
numbersep=9pt, % this defines how far the numbers are from the text
|
|
emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise
|
|
%emph=[2]{word1,word2}, emphstyle=[2]{style},
|
|
xleftmargin=2em
|
|
}
|
|
%\lstset{basicstyle=\small,
|
|
% keywordstyle=\color{mauve},
|
|
% identifierstyle=\color{dkgreen},
|
|
% stringstyle=\color{gray},
|
|
% numbers=left,
|
|
% xleftmargin=5em
|
|
% }
|
|
|
|
|
|
\newcommand{\angstrom}{\textup{\AA}}
|
|
|
|
\title{ECE 456 - Problem Set 3 (Part 1)}
|
|
\date{2021-03-31}
|
|
\author{David Lenfesty \\ lenfesty@ualberta.ca
|
|
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
|
|
|
|
\pagestyle{fancy}
|
|
|
|
\fancyhead[L]{\textbf{ECE 456} - Problem Set 3 (Part 1)}
|
|
\fancyhead[R]{David Lenfesty and Phillip Kirwin}
|
|
\fancyfoot[C]{Page \thepage}
|
|
\renewcommand{\headrulewidth}{1pt}
|
|
\renewcommand{\footrulewidth}{1pt}
|
|
|
|
\begin{document}
|
|
\doublespacing
|
|
\maketitle
|
|
\thispagestyle{empty}
|
|
\singlespacing
|
|
\newpage
|
|
|
|
\section*{Problem 1}
|
|
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
|
\item %1a
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
|
\item %1bi
|
|
The matrix equation is
|
|
\begin{equation*}
|
|
[\hat{H}]\left\{\phi\right\} = E \left\{\phi\right\},
|
|
\end{equation*}
|
|
where \([\hat{H}]\) is an \(N\)-by-\(N\) matrix with \([\hat{H}]_{nm} = 0\) except for the following elements:
|
|
\begin{align*}
|
|
&[\hat{H}]_{nn} = 2t_0 + U_n \\
|
|
&[\hat{H}]_{n,n \pm 1} = -t_0 \\
|
|
&[\hat{H}]_{0,N} = [\hat{H}]_{N,0} = -t_0,
|
|
\end{align*}
|
|
with \(t_0 = \hbar^2/(2ma^2)\) and \(U_n = U(na)\). The \(N\)-vector \(\left\{\phi\right\}\) has elements \(\phi_n\) which each represent
|
|
the value of the eigenvector at the point \(na = x_n\).
|
|
\item %1bii
|
|
|
|
The expression of the wave function \( \phi (x) \) as a sum of basis functions is as below:
|
|
|
|
\begin{equation*}
|
|
\phi (x) = \sum _{n = 1} ^{N} \phi _n u_n(x)
|
|
\end{equation*}
|
|
|
|
The derived matrix equation:
|
|
|
|
\begin{equation*}
|
|
[\hat{H}] _u \{ \phi \} = [S]_u \{ \phi \}
|
|
\end{equation*}
|
|
|
|
Where \( [\hat{H}]_u \) is a matrix with the elements:
|
|
|
|
\begin{equation*}
|
|
H_{nm} = \int u _n ^* (x) \hat{H} u_m(x) dx
|
|
\end{equation*}
|
|
|
|
and \( [S]_u \) is a matrix with the elements:
|
|
|
|
\begin{equation*}
|
|
S_{nm} = \int u _n ^* (x) u_m(x) dx
|
|
\end{equation*}
|
|
|
|
\([\hat{H}]_u\) and \([S]_u\) are both of size \(N\)-by-\(N\). The elements
|
|
of \(\left\{\phi\right\}\), \(\phi_n\), are the expansion coefficients of \(\phi(x)\).
|
|
\end{enumerate}
|
|
|
|
\item %1b
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
|
\item %1bi
|
|
code:
|
|
\begin{lstlisting}
|
|
%constants
|
|
E1 = -13.6;
|
|
R = 0.074;
|
|
a0 = 0.0529;
|
|
|
|
%matrix elements
|
|
R0 = R/a0;
|
|
|
|
a = 2*E1*(1-(1+R0)*exp(-2*R0))/R0;
|
|
b = 2*E1*(1+R0)*exp(-R0);
|
|
s = exp(-R0)*(1+R0+(R0^2/3));
|
|
|
|
%matrices
|
|
H_u = [E1 + a, E1*s+b; E1*s+b, E1 + a];
|
|
S_u = [1, s; s, 1];
|
|
|
|
%find eigenvalues and eigenvectors
|
|
[vectors,energies] = eig(inv(S_u)*H_u);
|
|
|
|
\end{lstlisting}
|
|
The bonding and antibonding eigenenergies are \(\boxed{\SI{-32.2567}{eV}}\) and \(\boxed{\SI{-15.5978}{eV}}\) respectively.
|
|
\item %1bii
|
|
Neglecting normalization, we have the following expressions for \(\phi_B(z)\) and \(\phi_A(z)\):
|
|
\begin{align*}
|
|
\phi_B(z) = u_L(z) + u_R(z) \\
|
|
\phi_A(z) = u_L(z) - u_R(z).
|
|
\end{align*}
|
|
We obtain the following plot:
|
|
|
|
\begin{minipage}[t]{\linewidth}
|
|
|
|
\centering
|
|
\adjustbox{valign=t}{
|
|
\includegraphics[width=0.5\textwidth]{q1bii.png}
|
|
}
|
|
\captionof{figure}{non-normalized probability densities for bonding and antibonding solutions.}
|
|
\end{minipage}
|
|
|
|
\end{enumerate}
|
|
\end{enumerate}
|
|
\newpage
|
|
|
|
\section*{Problem 2}
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
|
\item %2a
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
|
\item %2ai
|
|
|
|
\begin{minipage}[t]{\linewidth}
|
|
|
|
\centering
|
|
\adjustbox{valign=t}{
|
|
\includegraphics[width=0.5\textwidth]{q2ai.png}
|
|
}
|
|
% TODO still don't like this caption
|
|
\captionof{figure}{Energy vs. wave vector relationship.}
|
|
\end{minipage}
|
|
|
|
\item %2aii
|
|
|
|
Energy values from \( -2 \) eV to \(2\) eV are allowed.
|
|
|
|
\item %2aiii
|
|
|
|
The vector \( \{ \phi \} \), which is of length \( N \), and has elements \( n \) is:
|
|
|
|
\begin{equation*}
|
|
\{ \phi \} = C e ^{ i k \cdot n a }
|
|
\end{equation*}
|
|
\begin{align*}
|
|
\left\{\phi\right\} = \begin{bmatrix}
|
|
Ce^{ika} \\
|
|
Ce^{ik2a} \\
|
|
\vdots \\
|
|
C_Ae^{ikNa}
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
The corresponding wave function is:
|
|
|
|
\begin{equation*}
|
|
\phi (x) = \sum _ {n = 1} ^ N C e ^ { i k \cdot n a } u_n (x)
|
|
\end{equation*}
|
|
|
|
There is one wave function and thus one energy level for each value of \( k \).
|
|
This means that there is one electronic state per \( k \).
|
|
|
|
\end{enumerate}
|
|
\item %2b
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
|
\item %2bi
|
|
\begin{align*}
|
|
\left\{\phi\right\} = \begin{bmatrix}
|
|
C_Ae^{ika} \\
|
|
C_Be^{ika} \\
|
|
C_Ae^{ik2a} \\
|
|
C_Be^{ik2a} \\
|
|
\vdots \\
|
|
C_Ae^{ikNa} \\
|
|
C_Be^{ikNa}
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
\item %2bii
|
|
\begin{equation*}
|
|
\phi(x) = \sum_{n=1}^{N} C_Ae^{ikna} u_{nA}(x) + C_Be^{ikna} u_{nB}(x)
|
|
\end{equation*}
|
|
\item %2biii
|
|
\([h(k)]\) is of size 2-by-2. Thus there will be two values of \(E(k)\) for a fixed \(k\).
|
|
This also means there are two \(\phi(x)\) for each \(k\).
|
|
\end{enumerate}
|
|
\item %2c
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
|
|
\item %2ci
|
|
|
|
\begin{align*}
|
|
\phi _2 + 2 \phi _3 + \phi _4 &= E \phi_1 \\
|
|
\phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\
|
|
2 \phi _1 + \phi _2 + \phi _4 &= E \phi_3 \\
|
|
\phi _1 + 2 \phi _2 + \phi _3 &= E \phi_4 \\
|
|
\end{align*}
|
|
|
|
\item %2cii
|
|
|
|
\begin{align*}
|
|
\phi _2 + 2 \phi _3 + \phi _0 &= E \phi_1 \\
|
|
\phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\
|
|
2 \phi _5 + \phi _2 + \phi _4 &= E \phi_3 \\
|
|
\phi _5 + 2 \phi _6 + \phi _3 &= E \phi_4 \\
|
|
\end{align*}
|
|
|
|
\item %2ciii
|
|
|
|
A generalized form of the $n$th equation is:
|
|
|
|
\begin{equation*}
|
|
E \phi_n = \phi_{n-1} + \phi_{n+1} + 2 \phi_{n+2}
|
|
\end{equation*}
|
|
|
|
\item %2civ
|
|
|
|
\begin{align}
|
|
E C e ^{ikna} &= Ce ^ {ik (n + 1)a} + Ce^{ik (n - 1)a} + 2 Ce^{ik (n + 2)a} \nonumber \\
|
|
E &= e^{ika} + e^{-ika} + 2 e^{2ika} \nonumber \\
|
|
E(k) &= 2 e^{2ika} + 2\cos(ka) \label{eq:e_k}
|
|
\end{align}
|
|
|
|
\item %2cv
|
|
|
|
Imposing the repeating boundary conditions \( \phi _{n + 4} = \phi _{n} \), We obtain the following relationship:
|
|
|
|
\begin{align*}
|
|
Ce^{ikna} &= Ce^{ik(n+4)a} \\
|
|
1 &= e^{i4ka}
|
|
\end{align*}
|
|
|
|
For this to hold, \(4ka\) must be some multiple of \(2 \pi \), and this mean \( k = \frac{\pi}{2a} \cdot integer \).
|
|
|
|
\item %2cvi
|
|
|
|
Using the E-k relationship from equation \ref{eq:e_k},
|
|
we know that \( k \) must always be real, so the \( 2\cos(ka) \) portion of the E-k relationship must be
|
|
real. As well, if we substitute in the equation for \( k \) we obtained in part \nolinebreak (v), we get the following (partial) expression:
|
|
|
|
\begin{equation*}
|
|
2e^{i2ka} = 2 e^{i\pi \cdot integer}
|
|
\end{equation*}
|
|
|
|
Which we know will always be real (with a value of \( \pm 2 \)).
|
|
|
|
\item %2cvii
|
|
Since \(e^{2\pi n} = 1\), we have:
|
|
\begin{align*}
|
|
\phi_n(k+\frac{2\pi}{a}) &= Ce^{i(k+\frac{2\pi}{a}) \cdot nA} = Ce^{ik \cdot nA} \\
|
|
\phi_n(k+\frac{2\pi}{a}) &= \phi_n(k).
|
|
\end{align*}
|
|
Therefore wavefunctions for which \(k\) is separated by \(\frac{2\pi}{a}\) are equivalent, and we
|
|
only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\).
|
|
\end{enumerate}
|
|
\end{enumerate}
|
|
\newpage
|
|
|
|
\section*{Problem 3}
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
|
\item %3a
|
|
Given the geometry and interaction rules stated, the interaction matrices \([H]_{nm}\) are zero except for
|
|
\begin{align*}
|
|
[H]_{nn} &= \begin{bmatrix}
|
|
E_0 & t_i \\
|
|
t_i & E_0 \\
|
|
\end{bmatrix} \\
|
|
[H]_{n,m*} &= \begin{bmatrix}
|
|
t_A & 0 \\
|
|
0 & t_B \\
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
where \(m*\) corresponds to any of the four nearest neighbor square-shaped unit cells to cell \(n\).
|
|
For cell \(n\), let cell \(a\) be above, cell \(b\) be to the right, cell \(c\) be below, and cell \(d\) be to the left.
|
|
Given that each cell is spaced a length \(a\) apart, the associated phase factors for nonzero \(H_{nm}\),
|
|
\(e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})}\), are then:
|
|
\begin{align*}
|
|
(n):& \quad 1 \\
|
|
(a):& \quad e^{ik_y a} \\
|
|
(b):& \quad e^{ik_x a} \\
|
|
(c):& \quad e^{-ik_y a} \\
|
|
(d):& \quad e^{-ik_x a} \\
|
|
\end{align*}
|
|
with \(\vec{k} = k_x\hat{x} + k_y\hat{y}\). The Bloch matrix then follows:
|
|
\begin{align*}
|
|
[h(\vec{k})] &= \sum_m [H]_{nm} e^{i\vec{k}\cdot(\vec{d_m}-\vec{d_n})} \\
|
|
&= \begin{bmatrix}
|
|
E_0 + t_A\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) & t_i \\
|
|
t_i & E_0 + t_B\left(e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}\right) \\
|
|
\end{bmatrix} \\
|
|
&= \begin{bmatrix}
|
|
E_0 + 2t_A\left(\cos(k_x a) + \cos(k_y a)\right) & t_i \\
|
|
t_i & E_0 + 2t_B\left(\cos(k_x a) + \cos(k_y a)\right) \\
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
\item %3b
|
|
|
|
To find the \(E\)-\(\vec{k}\) relationship in terms of cosine functions, we must first
|
|
find \( h_0 \) in terms of trigonometric functions.
|
|
We will require the following trigonometric identities to do so:
|
|
|
|
\begin{align}
|
|
\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \sin(\beta)\cos(\alpha)
|
|
\label{eq:sin_sum}
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\alpha)
|
|
\label{eq:cos_sum}
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
1 = \sin^2(\theta) \cos^2(\theta),
|
|
\label{eq:sum_squares}
|
|
\end{align}
|
|
|
|
as well as the following general sine/cosine properties:
|
|
\begin{align}
|
|
\begin{split}
|
|
\cos(\theta) &= \cos(-\theta) \\
|
|
\sin(\theta) &= -\sin(-\theta).
|
|
\label{eq:neg_sin_cos}
|
|
\end{split}
|
|
\end{align}
|
|
|
|
First we can rewrite the exponentials in \( h_0 \) using Euler's identity:
|
|
|
|
\begin{align*}
|
|
h_0 = -t_c \left( 1 + \cos(-k_x a - k_y b) + i \sin(-k_x a - k_y b) + \cos(-k_x a + k_y b) + i \sin(-k_x a + k_y b) \right)
|
|
\end{align*}
|
|
|
|
Using identities (\ref{eq:sin_sum}) and (\ref{eq:cos_sum}), we can expand this relationship further.
|
|
|
|
\begin{align*}
|
|
h_0 = -t+c \big( 1 &+ \cos(-k_x a)\cos(-k_y b) - \sin(-k_x a)\sin(-k_y b) + i \sin(-k_x a)\cos(-k_y b) + i \sin(-k_y b)\cos(-k_x a) \big. \\
|
|
\big. &+ \cos(k_y b)\cos(k_x a) + \sin(k_y b)\sin(k_x a) + i \sin(k_y b)\cos(k_x a) - i \sin(k_x a)\cos(k_y b) \big)
|
|
\end{align*}
|
|
|
|
Here we can use the properties from (\ref{eq:neg_sin_cos}) to reduce this equation. Since \( \left| h_0 \right| ^2 = h_0 h^*_0 \),
|
|
we also obtain a simple expression for \( h^*_0 \).
|
|
|
|
\begin{align*}
|
|
h_0 &= -t_c \left( 1 + 2\cos(k_x a)\cos(k_y b) - 2 i \sin(k_x a)\cos(k_y b)\right) \\
|
|
h^*_0 &= -t_c \left( 1 + 2\cos(k_x a)\cos(k_y b) + 2 i \sin(k_x a)\cos(k_y b)\right)
|
|
\end{align*}
|
|
|
|
We can now find \( \left| h_0 \right| ^2 = h_0 h^*_0 \):
|
|
|
|
\begin{align*}
|
|
h_0 h^*_0 = 1 + 4\cos(k_x a)\cos(k_y b) + 4\cos^2(k_y b)
|
|
\end{align*}
|
|
|
|
From this, we can finally obtain an expression for \( E(\vec{k}) \):
|
|
|
|
\begin{align}
|
|
E(\vec{k}) = E_0 \pm t_c \sqrt{1 + 4\cos(k_x a)\cos(k_y b) 4 \cos^2(k_y b)}
|
|
\end{align}
|
|
|
|
\end{enumerate}
|
|
|
|
\section*{Problem 4}
|
|
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
|
|
\item %4a
|
|
|
|
We can substitute (from the assignment) equation (24) into equation (23):
|
|
|
|
\begin{align}
|
|
\sum _k i \hbar \frac{\delta}{\delta t} c_k(t) \phi_k(x) e^{-i [E(k) / \hbar] t} &= \sum _k c_k(t) \hat{H_0} \phi(x)e^{-i [E(k) \ \hbar] t} \\
|
|
&+ \sum _k c_k(t) U_s(x, t) \phi _k (x) e^ {-i [E(k) / \hbar] t}
|
|
\label{eq:phi}
|
|
\end{align}
|
|
|
|
We can partially evaluate the derivative on the left hand side:
|
|
|
|
\begin{align*}
|
|
\frac{\delta}{\delta t} c_k(t) \phi _k(t)e^{-i [E(k) / \hbar]t} = \frac{\delta c_k(t)}{\delta t} \phi _k(t)e^{-i [E(k) / \hbar]t} - \frac{i}{\hbar} c_k(t)E(k)\phi _k (x) e^{-i [E(k) / \hbar]t}
|
|
\end{align*}
|
|
|
|
Expanding the rightmost term out into the summation, we get the expression \( \sum _k c_k(t) E(k) \phi _k(x) e^ {-i [E(k) / \hbar]t} \).
|
|
Since \( \hat{H_0} \phi _k(x) = E(k) \phi_k(x) \), we can see that this cancels out the term with \( \hat{H_0} \) in our first substition (\ref{eq:phi}),
|
|
and we get the final differential equation:
|
|
|
|
\begin{align*}
|
|
\sum_k c_k(t) U_s(x, t) \phi _k (x) e^{-i [E(k) / \hbar]t} = \sum_k i \hbar \frac{\delta c_k(t)}{\delta t} \phi_k(x) e^{-i [E(k) / \hbar] t}
|
|
\end{align*}
|
|
|
|
\item %4b
|
|
\begin{align*}
|
|
\sum_k c_k(t) \left[\int\phi_{k_f}^*(x)U_s(x,t) \phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \left[\int\phi_{k_f}^*(x)\phi_k(x)\:dx\right] e^{-i[E(k)/\hbar]t} \\
|
|
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= \sum_k i\hbar \frac{\partial c_k(t)}{\partial t} \delta_{k_f k} e^{-i[E(k)/\hbar]t} \\
|
|
\sum_k c_k(t) I_{k_f k} e^{-i[E(k)/\hbar]t} &= i\hbar \frac{\partial c_k(t)}{\partial t} e^{-i[E(k)/\hbar]t} \\
|
|
\end{align*}
|
|
where \(I_{k_f k}\) is as defined in the assignment and \(\delta_{k_f k}\) is the Kronecker delta.
|
|
\item %4c
|
|
|
|
Starting with the initial equation
|
|
|
|
\begin{align*}
|
|
\sum _k c_k(t) I_{k_f k} e ^ {-i [ E(k) / \hbar ] t } = i \hbar \frac{\delta c_{k_f}(t)}{\delta t} e ^ {-i [ E(k_f) / \hbar ] t}
|
|
\end{align*}
|
|
|
|
Since we approximated that \( c_k = 1 \), only when \( k = k_i \), and 0 otherwise, we can simplify
|
|
the sum on the left hand side to a single element, and divide out the exponentials.
|
|
|
|
\begin{align*}
|
|
I_{k_f k_i} e^{ i [- E(k_i) + E(k_f) / \hbar] t} = i \hbar \frac{\delta c_k(t)}{\delta t}
|
|
\end{align*}
|
|
|
|
Defining a new symbol \( \Lambda = [E(k_f) - E(k_i)] / \hbar \), we can simplify the equation to it's final form.
|
|
|
|
\begin{align}
|
|
I_{k_f k_i} e^{i \Lambda t} = i \hbar \frac{\delta c_k(t)}{\delta t}
|
|
\end{align}
|
|
|
|
\item %4d
|
|
\begin{align*}
|
|
\int \frac{\partial c_{k_f}(t)}{\partial t} &= \frac{1}{i\hbar} I_{k_fk_i} \int e^{i\Lambda t} \\
|
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} \frac{1}{i\Lambda} e^{i\Lambda t} + C \\
|
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \left[\frac{1}{i\Lambda} e^{i\Lambda t/2} + C e^{-i\Lambda t/2} \right]
|
|
\end{align*}
|
|
Let \(C=-\frac{1}{i\Lambda}\). We then have:
|
|
\begin{align*}
|
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{1}{i\Lambda} \left[ e^{i\Lambda t/2} - e^{-i\Lambda t/2} \right] \\
|
|
c_{k_f}(t) &= \frac{1}{i\hbar} I_{k_fk_i} e^{i\Lambda t/2} \frac{\sin(\Lambda t/2)}{\Lambda/2}.
|
|
\end{align*}
|
|
|
|
\item %4e
|
|
|
|
To generate the points, we used a simple MATLAB script, found in Appendix (A).
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
\app
|
|
|
|
\end{document} |