ECE_456_Reports/PS2/q1a.asv
2021-03-01 15:32:50 -07:00

58 lines
1.9 KiB
Plaintext

clear all;
%physical constants in MKS units
hbar = 1.054e-34;
q = 1.602e-19;
m = 9.110e-31;
%generate lattice
N = 100; %number of lattice points
n = [1:N]; %lattice points
a = 1e-10; %lattice constant
x = a * n; %x-coordinates
t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor
L = a * (N+1); %total length of consideration
%set up Hamiltonian matrix
U = 0*x; %0 potential at all x
main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix
lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix
upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix
H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix
[eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each column is an eigenvector
%"E_diag" is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal.
E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues
% return eigenvectors for the 1st and 50th eigenvalues
phi_1 = eigenvectors(:,1);
phi_50 = eigenvectors(:,50);
% find the probability densities of position for 1st and 50th eigenvectors
P_1 = phi_1 .* conj(phi_1);
P_50 = phi_50 .* conj(phi_50);
% Find first N analytic eigenvalues
E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (
% Plot the probability densities for 1st and 50th eigenvectors
figure(1); clf; h = plot(x,P_1,'kx',x,P_50,'k-');
grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]');
legend('n=1','n=50');
% Plot numerical eigenvalues
figure(2); clf; h = plot(n,E_col,'kx'); grid on;
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]');
axis([0 100 0 40]);