ECE_456_Reports/PS2/doc.tex
2021-03-01 17:15:53 -07:00

443 lines
16 KiB
TeX

\documentclass{article}
\usepackage{graphicx}
\usepackage{setspace}
\usepackage{listings}
\usepackage{color}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{float}
\usepackage[justification=centering]{caption}
\usepackage{subcaption}
\usepackage[margin=0.75in]{geometry}
\usepackage[parfill]{parskip}
\usepackage{fancyhdr}
\usepackage{titlesec}
\usepackage{lipsum}
\usepackage{enumitem}
\usepackage{cancel}
\titleformat{\subsection}[runin]{\normalfont \large \bfseries}
{\thesubsection}{1em}{}
\renewcommand{\thesubsection}{\indent(\alph{subsection})}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
\definecolor{mylilas}{RGB}{170,55,241}
\lstset{language=Matlab,%
%basicstyle=\color{red},
breaklines=true,%
morekeywords={matlab2tikz},
keywordstyle=\color{blue},%
morekeywords=[2]{1}, keywordstyle=[2]{\color{black}},
identifierstyle=\color{black},%
stringstyle=\color{mylilas},
commentstyle=\color{mygreen},%
showstringspaces=false,%without this there will be a symbol in the places where there is a space
numbers=left,%
numberstyle={\tiny \color{black}},% size of th_sume numbers
numbersep=9pt, % this defines how far the numbers are from the text
emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise
%emph=[2]{word1,word2}, emphstyle=[2]{style},
xleftmargin=2em
}
%\lstset{basicstyle=\small,
% keywordstyle=\color{mauve},
% identifierstyle=\color{dkgreen},
% stringstyle=\color{gray},
% numbers=left,
% xleftmargin=5em
% }
\title{ECE 456 - Problem Set 2}
\date{2021-03-01}
\author{David Lenfesty \\ lenfesty@ualberta.ca
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
\pagestyle{fancy}
\fancyhead[L]{\textbf{ECE 456} - Problem Set 2}
\fancyhead[R]{David Lenfesty and Phillip Kirwin}
\fancyfoot[C]{Page \thepage}
\renewcommand{\headrulewidth}{1pt}
\renewcommand{\footrulewidth}{1pt}
\begin{document}
\doublespacing
\maketitle
\thispagestyle{empty}
\singlespacing
\newpage
hello
\section*{Problem 1}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %1a
Code:
\begin{lstlisting}[language=Matlab]
clear all;
%physical constants in MKS units
hbar = 1.054e-34;
q = 1.602e-19;
m = 9.110e-31;
%generate lattice
N = 100; %number of lattice points
n = [1:N]; %lattice points
a = 1e-10; %lattice constant
x = a * n; %x-coordinates
t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor
L = a * (N+1); %total length of consideration
%set up Hamiltonian matrix
U = 0*x; %0 potential at all x
main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix
lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix
upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix
H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix
[eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each
%column is an eigenvector
%"E_diag" is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal.
E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues
% return eigenvectors for the 1st and 50th eigenvalues
phi_1 = eigenvectors(:,1);
phi_50 = eigenvectors(:,50);
% find the probability densities of position for 1st and 50th eigenvectors
P_1 = phi_1 .* conj(phi_1);
P_50 = phi_50 .* conj(phi_50);
% Find first N analytic eigenvalues
E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (2*m*L^2);
% Plot the probability densities for 1st and 50th eigenvectors
figure(1); clf; h = plot(x,P_1,'kx',x,P_50,'k-');
grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]');
legend('n=1','n=50');
% Plot numerical eigenvalues
figure(2); clf; h = plot(n,E_col,'kx'); grid on;
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]');
axis([0 100 0 40]);
% Add analytic eigenvalues to above plot
hold on;
plot(n,E_col_analytic,'k-');
legend({'Numerical','Analytical'},'Location','northwest');
\end{lstlisting}
%
\begin{figure}[H]
\centering
\begin{subfigure}{0.4\linewidth}
\centering
\includegraphics[width=\textwidth]{q1a_1and50.png}
\caption{Probability densities for \(n=1\)\\and \(n=50\).}
\label{fig:q3_ne}
\end{subfigure}%
\begin{subfigure}{0.4\linewidth}
\centering
\includegraphics[width=\textwidth]{q1a_eigenvals.png}
\caption{Comparison of first 101 numerical and analytic eigenvalues.}
\label{fig:q3_current}
\end{subfigure}
\end{figure}
\item %1b
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1bi
The analytical solution is
\begin{equation}
\phi(x) = A sin \left( \frac{n \pi}{L} x \right)
\label{eq:analytical}
\end{equation}
In order to normalise this equation it must conform to the following:
\begin{equation}
\int_{0}^{L} \left| \phi(x) \right| ^2 dx = 1.
\label{eq:normalise}
\end{equation}
We use the following identity:
\begin{equation}
\int\sin^2{(\alpha x)}\:dx = \frac{1}{2} x -\frac{1}{4\alpha}\sin{(2\alpha x)}.
\label{eq:integral_ident}
\end{equation}
Given that $sin$ of a real value is always real, we can disregard the norm operation, and directly relate (\ref{eq:analytical})
to the above identity.
Evaluating the integral gives us the following relationship
\begin{equation*}
\frac{1}{A^2} = \frac{1}{2} L - \cancel{\frac{L}{4n \pi} sin \left( \frac{2n \pi}{L} L \right)} - \cancel{\frac{1}{2} \cdot 0} + \cancel{\frac{L}{4n \pi} sin(0)}
\end{equation*}
From this, we find:
\begin{equation*}
A = \sqrt{\frac{2}{L}}
\end{equation*}
\item %1bii
Starting with the normalization condition for the numerical case:
\begin{align}
a\sum_{l=1}^N\left|\phi_l\right|^2 = a \\
a\sum_{l=1}^N\left|B\sin{\left(\frac{n\pi}{L}x_l\right)}\right|^2 = a,
\label{eq:numerical_norm}
\end{align}
recalling that \(x = al\), and allowing \(a \to 0\) while holding \(L\)
constant implies that \(N \to \infty\), since \(a=\frac{L}{N}\).
An integral is defined as the limit of a Riemann sum as follows:
\begin{equation}
\int_c^df(x)\:dx \equiv \lim_{n \to \infty}\sum_{i=1}^n\Delta x\cdot f(x_i).
\label{eq:Riemann_sum}
\end{equation}
where \(\Delta x = \frac{d-c}{n}\) and \(x_i = c + \Delta x \cdot i\). In our case,
\(n = N\), \(i = l\), \(c = 0\), \(d = L\), and \(\Delta x = a\), \(x_i = x_l\),
\(f(x) = \left|B\sin{\left(\frac{n\pi}{L}x\right)}\right|^2\). Therefore we can write
\begin{equation*}
\int_0^L \left|B\sin{\left(\frac{n\pi}{L}x\right)}\right|^2\:dx
= \lim_{N \to \infty}\sum_{l=1}^N a \cdot \left|B\sin{\left(\frac{n\pi}{L}x_l\right)}\right|^2
= a.
\end{equation*}
Using (\ref{eq:integral_ident}), we have
\begin{equation*}
\int_0^L \left|B\sin{\left(\frac{n\pi}{L}x\right)}\right|^2\:dx
= \frac{1}{2}L - \cancel{\frac{L}{4n\pi}\sin{\left(\frac{2n\pi}{L}L\right)}}
- 0 + 0
= \frac{a}{B^2}.
\end{equation*}
This means that B must be
\begin{equation*}
B = \sqrt{\frac{2 a}{L}} = \sqrt{a} \times A.
\end{equation*}
\end{enumerate}
\item %1c
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1ci
% TODO check that B is expressed correctly in all these equations (alpha, not ell, wait for pdf gen)
From the base form of $\phi _\ell = Bsin \left( \frac {n \pi}{L} \alpha \ell \right)$, we can see that
$\phi _ {\ell + 1}$ and $\phi _ {\ell - 1}$ correspond to the trigonometric identities
$sin(\alpha + B) = sin(\alpha)cos(B) + cos(\alpha)sin(B)$ and
$sin(\alpha + B) = sin(\alpha)cos(B) + cos(\alpha)sin(B)$, respectively, where
$\alpha = \frac{n \pi \alpha \ell}{L}$ and $B = \frac{n \pi \alpha}{L}$.
Plugging these identities into equation (7) from the assignment and simplifying, we get to this equation:
\begin{equation*}
-t_0 B sin \left( \frac{n \pi \alpha \ell}{L} \right) + 2 t_0 \phi _{\ell} - t_0 sin \left( \frac{n \pi \alpha \ell}{L} \right)
\end{equation*}
At this point, we notice that $\phi _ \ell = B sin \left( \frac {n \pi}{L} \alpha \ell \right)$,
so we can factor it out.
With some minor rearranging, this leaves us with the final expression for $E$:
\begin{equation}
E = 2t_0 \left( 1 - cos \left( \frac{n \pi \alpha}{L} \right) \right)
\label{eq:numerical_E}
\end{equation}
\item %1cii
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth]{q1cii.png}
\caption{Analytic solution to numeric system, plotted.}
\end{figure}
We can see here that the "predicted" numerical response matches nearly exactly the actual
calculated numerical solution.
\item %1ciii
Applying the approximation $cos(\Theta) = 1 - \frac{\Theta^2}{2}$ for small $\Theta$,
on equation (\ref{eq:numerical_E}), we get the following expression
\begin{equation*}
E = 2 t_0 \left( \frac{n^2 \pi^2 \alpha^2}{2 L^2} \right)
\end{equation*}
Fully substituting the known value of $t_0$, and we can get our final expression for $E$:
\begin{equation*}
E = \frac{ \hbar^2 n^2 \pi^2 }{ 2 m L^2 }
\end{equation*}
\item %1civ
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{q1civ_fig1.png}
\caption{Probability densities for \(n=1\)\\and \(n=50\).}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{q1civ_fig2.png}
\caption{Comparison of first 101 numerical and analytic eigenvalues.}
\end{subfigure}
\end{figure}
With the decreased lattice spacing, and increased number of points, we can see the numerical solution
of eigenvalues matches the analytical solution much closer. As well, we can see that the probability
density function appears to be "squeezed" in the centre, for the $n = 50$ case. The \(n=50\) case is
now a constant-amplitude wave, which corresponds to the expected analytic result - in contrast to the
plot in section (a), which has a low-frequency envelope around it.
\end{enumerate}
\item %1d
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1di
In order to modify the computations to those for a particle in a "ring"
we simply had to add $-t_0$ elements as the "corner" elements of the
hamiltonian operator array:
\begin{lstlisting}[language=Matlab]
% Modify hamiltonian for circular boundary conditions
H(1, N) = -t0;
H(N, 1) = -t0;
\end{lstlisting}
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{q1di_fig1.png}
\caption{Probability densities for \(n=4\)\\and \(n=5\).}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
\centering
\includegraphics[width=\textwidth]{q1di_fig2.png}
\caption{Comparison of first 101 numerical and analytic eigenvalues.}
\end{subfigure}
\end{figure}
\item %1dii
The energy levels for eigenvalues number 4 and 5 are both $0.06eV$.
These eigenstates are degenerate because they both have the same
eigenvalue/energy (0.06).
\item %1diii
\begin{figure}[H]
\centering
\includegraphics[width=\textwidth, angle=-90]{q1div.jpg}
\caption{Sketch of appropriate energy levels}
\end{figure}
\item %1div
Plugging the valid levels for $n$ into equation (10) from the assignment (and dividing
by the requisite $q$), we get the energy levels of $0eV, 0.0147eV, and 0.0589eV$, for the
eigenvalue numbers $n = 0, 1, and 2$, respectively. These match very closely, to within
acceptable margin of the numerical results from part (ii).
\end{enumerate}
\end{enumerate}
\section*{Problem 2}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %2a
\lipsum[1]
\item %2b
\lipsum[1]
\item %1c
\lipsum[1]
\item %1d
\lipsum[1]
\item %1e
\lipsum[1]
\item %1f
\lipsum[1]
\end{enumerate}
\section*{Problem 3}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %2a
\lipsum[1]
\item %2b
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1di
\lipsum[1]
\item %1dii
\lipsum[1]
\item %1diii
\lipsum[1]
\item %1div
\lipsum[1]
\item %1dv
\lipsum[1]
\item %1dvi
\lipsum[1]
\item %1dvii
\lipsum[1]
\end{enumerate}
\item %1c
\lipsum[1]
\item %1d
\lipsum[1]
\end{enumerate}
\section*{Problem 4}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %2a
\lipsum[1]
\item %2b
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1di
\lipsum[1]
\item %1dii
\lipsum[1]
\item %1diii
\lipsum[1]
\end{enumerate}
\end{enumerate}
\end{document}