162 lines
5.8 KiB
Matlab
162 lines
5.8 KiB
Matlab
clear all;
|
|
|
|
%% Constants
|
|
|
|
% Physical constants
|
|
hbar = 1.052e-34;
|
|
q = 1.602e-19;
|
|
%epsilon_0 = 8.854e-12;
|
|
%epsilon_r = 4;
|
|
%mstar = 0.25 * 9.11e-31;
|
|
|
|
% Single-charge coupling energy (eV)
|
|
U_0 = 0.25;
|
|
% (eV)
|
|
kBT = 0.025;
|
|
% Contact coupling coefficients (eV)
|
|
gamma_1 = 0.005;
|
|
gamma_2 = gamma_1;
|
|
gamma_sum = gamma_1 + gamma_2;
|
|
% Capacitive gate coefficient
|
|
a_G = 0.5;
|
|
% Capacitive drain coefficient
|
|
a_D = 0.5;
|
|
a_S = 1 - a_G - a_D;
|
|
|
|
% Central energy level
|
|
mu = 0;
|
|
|
|
% Energy grid, from -1eV to 1eV
|
|
NE = 501;
|
|
E = linspace(-1, 1, NE);
|
|
dE = E(2) - E(1);
|
|
% TODO name this better
|
|
cal_E = 0.2;
|
|
|
|
% Lorentzian density of states, normalized so the integral is 1
|
|
D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2 );
|
|
D = D ./ (dE*sum(D));
|
|
|
|
% Reference no. of electrons in channel
|
|
N_0 = 0;
|
|
|
|
voltages = linspace(0, 1, 101);
|
|
dV = voltages(2) - voltages(1);
|
|
|
|
% Terminal Voltages
|
|
V_G = 0;
|
|
V_S = 0;
|
|
|
|
for n = 1:length(voltages)
|
|
% Set varying drain voltage
|
|
V_D = voltages(n);
|
|
|
|
% Shifted energy levels of the contacts
|
|
mu_1 = mu - V_S;
|
|
mu_2 = mu - V_D;
|
|
|
|
% Laplace potential, does not change as solution is found (eV)
|
|
% q is factored out here, we are working in eV
|
|
U_L = - (a_G*V_G) - (a_D*V_D) - (a_S*V_S);
|
|
|
|
% Poisson potential must change, assume 0 initially (eV)
|
|
U_P = 0;
|
|
|
|
% Assume large rate of change
|
|
dU_P = 1;
|
|
|
|
% Run until we get close enough to the answer
|
|
while dU_P > 1e-6
|
|
% source Fermi function
|
|
f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT));
|
|
% drain Fermi function
|
|
f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT));
|
|
|
|
% Update channel electrons against potential
|
|
N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D);
|
|
|
|
% Re-update Poisson portion of potential
|
|
tmpU_P = U_0 * ( N(n) - N_0);
|
|
dU_P = abs(U_P - tmpU_P);
|
|
|
|
% Unsure why U_P is updated incrementally, perhaps to avoid oscillations?
|
|
%U_P = tmpU_P;
|
|
U_P = U_P + 0.1 * (tmpU_P - U_P);
|
|
end
|
|
|
|
% Calculate current based on solved potential.
|
|
% Note: f1 is dependent on changes in U but has been updated prior in the loop
|
|
I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D);
|
|
|
|
if (abs(V_D-0.0) <= dV/2)
|
|
figure(3); title('VD = 0.0 V');
|
|
subplot(2,3,1); plot(f_1,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.0 V');
|
|
subplot(2,3,2); plot(D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.0 V');
|
|
subplot(2,3,3); plot(f_2,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f2(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.0 V');
|
|
subplot(2,3,5); plot(f_1-f_2,E,'--',D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)-f2(E+U), D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.0 V');
|
|
elseif (abs(V_D-0.2) <= dV/2)
|
|
figure(4); title('VD = 0.2 V');
|
|
subplot(2,3,1); plot(f_1,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.2 V');
|
|
subplot(2,3,2); plot(D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.2 V');
|
|
subplot(2,3,3); plot(f_2,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f2(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.2 V');
|
|
subplot(2,3,5); plot(f_1-f_2,E,'--',D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)-f2(E+U), D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.2 V');
|
|
elseif (abs(V_D-0.5) <= dV/2)
|
|
figure(5); title('VD = 0.5 V');
|
|
subplot(2,3,1); plot(f_1,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.5 V');
|
|
subplot(2,3,2); plot(D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.5 V');
|
|
subplot(2,3,3); plot(f_2,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f2(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.5 V');
|
|
subplot(2,3,5); plot(f_1-f_2,E,'--',D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)-f2(E+U), D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.5 V');
|
|
elseif (abs(V_D-0.8) <= dV/2)
|
|
figure(6); title('VD = 0.8 V');
|
|
subplot(2,3,1); plot(f_1,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.8 V');
|
|
subplot(2,3,2); plot(D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.8 V');
|
|
subplot(2,3,3); plot(f_2,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f2(E+U)'); ylabel('ENERGY [eV]'); title('VD = 0.8 V');
|
|
subplot(2,3,5); plot(f_1-f_2,E,'--',D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)-f2(E+U), D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 0.8 V');
|
|
elseif (abs(V_D-1.0) <= dV/2)
|
|
figure(7); title('VD = 1.0 V');
|
|
subplot(2,3,1); plot(f_1,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)'); ylabel('ENERGY [eV]'); title('VD = 1.0 V');
|
|
subplot(2,3,2); plot(D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 1.0 V');
|
|
subplot(2,3,3); plot(f_2,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f2(E+U)'); ylabel('ENERGY [eV]'); title('VD = 1.0 V');
|
|
subplot(2,3,5); plot(f_1-f_2,E,'--',D/100,E,'k-'); axis([-0.1 1.1 -1 1]);
|
|
xlabel('f1(E+U)-f2(E+U), D(E)/100'); ylabel('ENERGY [eV]'); title('VD = 1.0 V');
|
|
end
|
|
|
|
end
|
|
|
|
|
|
%%Plotting commands
|
|
|
|
figure(1);
|
|
h = plot(voltages, N,'k');
|
|
grid on;
|
|
set(h,'linewidth',[2.0]);
|
|
set(gca,'Fontsize',[18]);
|
|
xlabel('Drain voltage [V]');
|
|
ylabel('Number of electrons');
|
|
|
|
figure(2);
|
|
h = plot(voltages, I,'k');
|
|
grid on;
|
|
set(h,'linewidth',[2.0]);
|
|
set(gca,'Fontsize',[18]);
|
|
xlabel('Drain voltage [V]');
|
|
ylabel('Current [A]'); |