ECE_456_Reports/PS1/doc.tex

283 lines
8.9 KiB
TeX

\documentclass{article}
\usepackage{graphicx}
\usepackage{setspace}
\usepackage{listings}
\usepackage{color}
\usepackage{amsmath}
\usepackage{float}
\usepackage{caption}
\usepackage{subcaption}
\usepackage[margin=0.75in]{geometry}
\renewcommand{\thesubsection}{\indent(\alph{subsection})}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
%\lstset{language=Matlab,%
% %basicstyle=\color{red},
% breaklines=true,%
% morekeywords={matlab2tikz},
% keywordstyle=\color{blue},%
% morekeywords=[2]{1}, keywordstyle=[2]{\color{black}},
% identifierstyle=\color{black},%
% stringstyle=\color{mylilas},
% commentstyle=\color{mygreen},%
% showstringspaces=false,%without this there will be a symbol in the places where there is a space
% numbers=left,%
% numberstyle={\tiny \color{black}},% size of the numbers
% numbersep=9pt, % this defines how far the numbers are from the text
% emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise
% %emph=[2]{word1,word2}, emphstyle=[2]{style},
%}
\lstset{basicstyle=\small,
keywordstyle=\color{mauve},
identifierstyle=\color{dkgreen},
stringstyle=\color{gray},
numbers=left,
xleftmargin=5em
}
\title{ECE 456 - Problem Set 1}
\date{2021-02-06}
\author{David Lenfesty \\ lenfesty@ualberta.ca
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
\setcounter{tocdepth}{2} % Show subsections
\begin{document}
\doublespacing
\pagenumbering{gobble}
\maketitle
\newpage
\singlespacing
\pagenumbering{arabic}
\section*{Question 1}
\subsection*{(a)}
Beginning with the following two equations:
\begin{equation}
\label{eq:N_old}
N = \int_{-\infty}^{\infty}\frac{\gamma_1 f_1(E) + \gamma_2 f_2(E)}{\gamma_1 + \gamma_2} D(E-U) dE,
\end{equation}
\begin{equation}
\label{eq:I_old}
I = \frac{q}{\hbar}\frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{-\infty}^{\infty}[f_1(E) - f_2(E)] D(E-U) dE,
\end{equation}
and changing the variable of integration to $E' = E - U$:
\begin{equation*}
N = \int_{-\infty}^{\infty}\frac{\gamma_1 f_1(E' + U) + \gamma_2 f_2(E' + U)}{\gamma_1 + \gamma_2} D(E') dE',
\end{equation*}
\begin{equation*}
I = \frac{q}{\hbar}\frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{-\infty}^{\infty}[f_1(E' + U) - f_2(E' + U)] D(E') dE'.
\end{equation*}
Replacing $E' \rightarrow E$, we obtain equations \ref{eq:N_new} and \ref{eq:I_new}.
\begin{equation}
\label{eq:N_new}
N = \int_{-\infty}^{\infty}\frac{\gamma_1 f_1(E + U) + \gamma_2 f_2(E + U)}{\gamma_1 + \gamma_2} DE dE,
\end{equation}
\begin{equation}
\label{eq:I_new}
I = \frac{q}{\hbar}\frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \int_{-\infty}^{\infty}[f_1(E + U) - f_2(E + U)] DE dE,
\end{equation}
\subsection*{(b)}
For the provided constants, the plots of the number of channel electrons and the channel current follow:
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1b_electrons.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1b_electrons}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1b_current.png}
\caption{Plot of channel current vs. drain voltage.}
\label{fig:q1b_current}
\end{subfigure}
\caption{Number of electrons and current versus drain voltage.}
\end{figure}
Below is our code. Note that some variable names are different from those in the example code.
\begin{lstlisting}[language=Matlab]
clear all;
%% Constants
% Physical constants
hbar = 1.052e-34;
% Single-charge coupling energy (eV)
U_0 = 0.25;
% (eV)
kBT = 0.025;
% Contact coupling coefficients (eV)
gamma_1 = 0.005;
gamma_2 = gamma_1;
gamma_sum = gamma_1 + gamma_2;
% Capacitive gate coefficient
a_G = 0.5;
% Capacitive drain coefficient
a_D = 0.5;
a_S = 1 - a_G - a_D;
% Central energy level
mu = 0;
% Energy grid, from -1eV to 1eV
NE = 501;
E = linspace(-1, 1, NE);
dE = E(2) - E(1);
% TODO name this better
cal_E = 0.2;
% Lorentzian density of states, normalized so the integral is 1
D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2 );
D = D ./ (dE*sum(D));
% Reference no. of electrons in channel
N_0 = 0;
voltages = linspace(0, 1, 101);
% Terminal Voltages
V_G = 0;
V_S = 0;
for n = 1:length(voltages)
% Set varying drain voltage
V_D = voltages(n);
% Shifted energy levels of the contacts
mu_1 = mu - V_S;
mu_2 = mu - V_D;
% Laplace potential, does not change as solution is found (eV)
% q is factored out here, we are working in eV
U_L = - (a_G*V_G) - (a_D*V_D) - (a_S*V_S);
% Poisson potential must change, assume 0 initially (eV)
U_P = 0;
% Assume large rate of change
dU_P = 1;
% Run until we get close enough to the answer
while dU_P > 1e-6
% source Fermi function
f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT));
% drain Fermi function
f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT));
% Update channel electrons against potential
N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D);
% Re-update Poisson portion of potential
tmpU_P = U_0 * ( N(n) - N_0);
dU_P = abs(U_P - tmpU_P);
% Unsure why U_P is updated incrementally, perhaps to avoid oscillations?
%U_P = tmpU_P;
%U_P = U_P + 0.1 * (tmpU_P - U_P);
end
% Calculate current based on solved potential.
% Note: f1 is dependent on changes in U but has been updated prior in the loop
I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D);
end
%%Plotting commands
figure(1);
h = plot(voltages, N,'k');
grid on;
set(h,'linewidth',[2.0]);
set(gca,'Fontsize',[18]);
xlabel('Drain voltage [V]');
ylabel('Number of electrons');
figure(2);
h = plot(voltages, I,'k');
grid on;
set(h,'linewidth',[2.0]);
set(gca,'Fontsize',[18]);
xlabel('Drain voltage [V]');
ylabel('Current [A]');
\end{lstlisting}
\subsection*{(c)}
\begin{figure}[H]
\centering
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1c_1.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1c_1}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1c_2.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1c_1}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1c_3.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1c_1}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1c_4.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1c_1}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
% Mess around with widths later
\centering
\includegraphics[width=\textwidth]{q1c_5.png}
\caption{Plot of channel electrons vs. drain voltage.}
\label{fig:q1c_1}
% Note that the comment after \end{subfigure} is required for side by side figures
\end{subfigure}%
\caption{Visual representation of the fermi functions of the contacts and channel.}
\end{figure}
% TODO appendix for Part C code
\end{document}