ece312/final_project/sd_reader/main.c

667 lines
22 KiB
C

/*
* Copyright (c) 2006-2012 by Roland Riegel <feedback@roland-riegel.de>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <string.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>
#include "fat.h"
#include "fat_config.h"
#include "partition.h"
#include "sd_raw.h"
#include "sd_raw_config.h"
#include "uart.h"
#define DEBUG 1
/**
* \mainpage MMC/SD/SDHC card library
*
* This project provides a general purpose library which implements read and write
* support for MMC, SD and SDHC memory cards.
*
* It includes
* - low-level \link sd_raw MMC, SD and SDHC read/write routines \endlink
* - \link partition partition table support \endlink
* - a simple \link fat FAT16/FAT32 read/write implementation \endlink
*
* \section circuit The circuit
* The circuit which was mainly used during development consists of an Atmel AVR
* microcontroller with some passive components. It is quite simple and provides
* an easy test environment. The circuit which can be downloaded on the
* <a href="http://www.roland-riegel.de/sd-reader/">project homepage</a> has been
* improved with regard to operation stability.
*
* I used different microcontrollers during development, the ATmega8 with 8kBytes
* of flash, and its pin-compatible alternative, the ATmega168 with 16kBytes flash.
* The first one is the one I started with, but when I implemented FAT16 write
* support, I ran out of flash space and switched to the ATmega168. For FAT32, an
* ATmega328 is required.
*
* The circuit board is a self-made and self-soldered board consisting of a single
* copper layer and standard DIL components, except of the MMC/SD card connector.
*
* The connector is soldered to the bottom side of the board. It has a simple
* eject button which, when a card is inserted, needs some space beyond the connector
* itself. As an additional feature the connector has two electrical switches
* to detect wether a card is inserted and wether this card is write-protected.
*
* \section pictures Pictures
* \image html pic01.jpg "The circuit board used to implement and test this application."
* \image html pic02.jpg "The MMC/SD card connector on the soldering side of the circuit board."
*
* \section software The software
* The software is written in C (ISO C99). It might not be the smallest or
* the fastest one, but I think it is quite flexible. See the project's
* <a href="http://www.roland-riegel.de/sd-reader/benchmarks/">benchmark page</a> to get an
* idea of the possible data rates.
*
* I implemented an example application providing a simple command prompt which is accessible
* via the UART at 9600 Baud. With commands similiar to the Unix shell you can browse different
* directories, read and write files, create new ones and delete them again. Not all commands are
* available in all software configurations.
* - <tt>cat \<file\></tt>\n
* Writes a hexdump of \<file\> to the terminal.
* - <tt>cd \<directory\></tt>\n
* Changes current working directory to \<directory\>.
* - <tt>disk</tt>\n
* Shows card manufacturer, status, filesystem capacity and free storage space.
* - <tt>init</tt>\n
* Reinitializes and reopens the memory card.
* - <tt>ls</tt>\n
* Shows the content of the current directory.
* - <tt>mkdir \<directory\></tt>\n
* Creates a directory called \<directory\>.
* - <tt>mv \<file\> \<file_new\></tt>\n
* Renames \<file\> to \<file_new\>.
* - <tt>rm \<file\></tt>\n
* Deletes \<file\>.
* - <tt>sync</tt>\n
* Ensures all buffered data is written to the card.
* - <tt>touch \<file\></tt>\n
* Creates \<file\>.
* - <tt>write \<file\> \<offset\></tt>\n
* Writes text to \<file\>, starting from \<offset\>. The text is read
* from the UART, line by line. Finish with an empty line.
*
* \htmlonly
* <p>
* The following table shows some typical code sizes in bytes, using the 20090330 release with a
* buffered read-write MMC/SD configuration, FAT16 and static memory allocation:
* </p>
*
* <table border="1" cellpadding="2">
* <tr>
* <th>layer</th>
* <th>code size</th>
* <th>static RAM usage</th>
* </tr>
* <tr>
* <td>MMC/SD</td>
* <td align="right">2410</td>
* <td align="right">518</td>
* </tr>
* <tr>
* <td>Partition</td>
* <td align="right">456</td>
* <td align="right">17</td>
* </tr>
* <tr>
* <td>FAT16</td>
* <td align="right">7928</td>
* <td align="right">188</td>
* </tr>
* </table>
*
* <p>
* The static RAM is mostly used for buffering memory card access, which
* improves performance and reduces implementation complexity.
* </p>
*
* <p>
* Please note that the numbers above do not include the C library functions
* used, e.g. some string functions. These will raise the numbers somewhat
* if they are not already used in other program parts.
* </p>
*
* <p>
* When opening a partition, filesystem, file or directory, a little amount
* of RAM is used, as listed in the following table. Depending on the library
* configuration, the memory is either allocated statically or dynamically.
* </p>
*
* <table border="1" cellpadding="2">
* <tr>
* <th>descriptor</th>
* <th>dynamic/static RAM</th>
* </tr>
* <tr>
* <td>partition</td>
* <td align="right">17</td>
* </tr>
* <tr>
* <td>filesystem</td>
* <td align="right">26</td>
* </tr>
* <tr>
* <td>file</td>
* <td align="right">53</td>
* </tr>
* <tr>
* <td>directory</td>
* <td align="right">49</td>
* </tr>
* </table>
*
* \endhtmlonly
*
* \section adaptation Adapting the software to your needs
* The only hardware dependent part is the communication layer talking to the
* memory card. The other parts like partition table and FAT support are
* completely independent, you could use them even for managing Compact Flash
* cards or standard ATAPI hard disks.
*
* By changing the MCU* variables in the Makefile, you can use other Atmel
* microcontrollers or different clock speeds. You might also want to change
* the configuration defines in the files fat_config.h, partition_config.h,
* sd_raw_config.h and sd-reader_config.h. For example, you could disable
* write support completely if you only need read support.
*
* For further information, visit the project's
* <a href="http://www.roland-riegel.de/sd-reader/faq/">FAQ page</a>.
*
* \section bugs Bugs or comments?
* If you have comments or found a bug in the software - there might be some
* of them - you may contact me per mail at feedback@roland-riegel.de.
*
* \section acknowledgements Acknowledgements
* Thanks go to Ulrich Radig, who explained on his homepage how to interface
* MMC cards to the Atmel microcontroller (http://www.ulrichradig.de/).
* I adapted his work for my circuit.
*
* \section copyright Copyright 2006-2012 by Roland Riegel
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation (http://www.gnu.org/copyleft/gpl.html).
* At your option, you can alternatively redistribute and/or modify the following
* files under the terms of the GNU Lesser General Public License version 2.1
* as published by the Free Software Foundation (http://www.gnu.org/copyleft/lgpl.html):
* - byteordering.c
* - byteordering.h
* - fat.c
* - fat.h
* - fat_config.h
* - partition.c
* - partition.h
* - partition_config.h
* - sd_raw.c
* - sd_raw.h
* - sd_raw_config.h
* - sd-reader_config.h
*/
static uint8_t read_line(char* buffer, uint8_t buffer_length);
static uint32_t strtolong(const char* str);
static uint8_t find_file_in_dir(struct fat_fs_struct* fs, struct fat_dir_struct* dd, const char* name, struct fat_dir_entry_struct* dir_entry);
static struct fat_file_struct* open_file_in_dir(struct fat_fs_struct* fs, struct fat_dir_struct* dd, const char* name);
static uint8_t print_disk_info(const struct fat_fs_struct* fs);
int main()
{
/* we will just use ordinary idle mode */
set_sleep_mode(SLEEP_MODE_IDLE);
/* setup uart */
uart_init();
while(1)
{
/* setup sd card slot */
if(!sd_raw_init())
{
#if DEBUG
uart_puts_p(PSTR("MMC/SD initialization failed\n"));
#endif
continue;
}
/* open first partition */
struct partition_struct* partition = partition_open(sd_raw_read,
sd_raw_read_interval,
#if SD_RAW_WRITE_SUPPORT
sd_raw_write,
sd_raw_write_interval,
#else
0,
0,
#endif
0
);
if(!partition)
{
/* If the partition did not open, assume the storage device
* is a "superfloppy", i.e. has no MBR.
*/
partition = partition_open(sd_raw_read,
sd_raw_read_interval,
#if SD_RAW_WRITE_SUPPORT
sd_raw_write,
sd_raw_write_interval,
#else
0,
0,
#endif
-1
);
if(!partition)
{
#if DEBUG
uart_puts_p(PSTR("opening partition failed\n"));
#endif
continue;
}
}
/* open file system */
struct fat_fs_struct* fs = fat_open(partition);
if(!fs)
{
#if DEBUG
uart_puts_p(PSTR("opening filesystem failed\n"));
#endif
continue;
}
/* open root directory */
struct fat_dir_entry_struct directory;
fat_get_dir_entry_of_path(fs, "/", &directory);
struct fat_dir_struct* dd = fat_open_dir(fs, &directory);
if(!dd)
{
#if DEBUG
uart_puts_p(PSTR("opening root directory failed\n"));
#endif
continue;
}
/* print some card information as a boot message */
print_disk_info(fs);
/* provide a simple shell */
char buffer[24];
while(1)
{
/* print prompt */
uart_putc('>');
uart_putc(' ');
/* read command */
char* command = buffer;
if(read_line(command, sizeof(buffer)) < 1)
continue;
/* execute command */
if(strcmp_P(command, PSTR("init")) == 0)
{
break;
}
else if(strncmp_P(command, PSTR("cd "), 3) == 0)
{
command += 3;
if(command[0] == '\0')
continue;
/* change directory */
struct fat_dir_entry_struct subdir_entry;
if(find_file_in_dir(fs, dd, command, &subdir_entry))
{
struct fat_dir_struct* dd_new = fat_open_dir(fs, &subdir_entry);
if(dd_new)
{
fat_close_dir(dd);
dd = dd_new;
continue;
}
}
uart_puts_p(PSTR("directory not found: "));
uart_puts(command);
uart_putc('\n');
}
else if(strcmp_P(command, PSTR("ls")) == 0)
{
/* print directory listing */
struct fat_dir_entry_struct dir_entry;
while(fat_read_dir(dd, &dir_entry))
{
uint8_t spaces = sizeof(dir_entry.long_name) - strlen(dir_entry.long_name) + 4;
uart_puts(dir_entry.long_name);
uart_putc(dir_entry.attributes & FAT_ATTRIB_DIR ? '/' : ' ');
while(spaces--)
uart_putc(' ');
uart_putdw_dec(dir_entry.file_size);
uart_putc('\n');
}
}
else if(strncmp_P(command, PSTR("cat "), 4) == 0)
{
command += 4;
if(command[0] == '\0')
continue;
/* search file in current directory and open it */
struct fat_file_struct* fd = open_file_in_dir(fs, dd, command);
if(!fd)
{
uart_puts_p(PSTR("error opening "));
uart_puts(command);
uart_putc('\n');
continue;
}
/* print file contents */
uint8_t buffer[8];
uint32_t offset = 0;
intptr_t count;
while((count = fat_read_file(fd, buffer, sizeof(buffer))) > 0)
{
uart_putdw_hex(offset);
uart_putc(':');
for(intptr_t i = 0; i < count; ++i)
{
uart_putc(' ');
uart_putc_hex(buffer[i]);
}
uart_putc('\n');
offset += 8;
}
fat_close_file(fd);
}
else if(strcmp_P(command, PSTR("disk")) == 0)
{
if(!print_disk_info(fs))
uart_puts_p(PSTR("error reading disk info\n"));
}
#if FAT_WRITE_SUPPORT
else if(strncmp_P(command, PSTR("rm "), 3) == 0)
{
command += 3;
if(command[0] == '\0')
continue;
struct fat_dir_entry_struct file_entry;
if(find_file_in_dir(fs, dd, command, &file_entry))
{
if(fat_delete_file(fs, &file_entry))
continue;
}
uart_puts_p(PSTR("error deleting file: "));
uart_puts(command);
uart_putc('\n');
}
else if(strncmp_P(command, PSTR("touch "), 6) == 0)
{
command += 6;
if(command[0] == '\0')
continue;
struct fat_dir_entry_struct file_entry;
if(!fat_create_file(dd, command, &file_entry))
{
uart_puts_p(PSTR("error creating file: "));
uart_puts(command);
uart_putc('\n');
}
}
else if(strncmp_P(command, PSTR("mv "), 3) == 0)
{
command += 3;
if(command[0] == '\0')
continue;
char* target = command;
while(*target != ' ' && *target != '\0')
++target;
if(*target == ' ')
*target++ = '\0';
else
continue;
struct fat_dir_entry_struct file_entry;
if(find_file_in_dir(fs, dd, command, &file_entry))
{
if(fat_move_file(fs, &file_entry, dd, target))
continue;
}
uart_puts_p(PSTR("error moving file: "));
uart_puts(command);
uart_putc('\n');
}
else if(strncmp_P(command, PSTR("write "), 6) == 0)
{
command += 6;
if(command[0] == '\0')
continue;
char* offset_value = command;
while(*offset_value != ' ' && *offset_value != '\0')
++offset_value;
if(*offset_value == ' ')
*offset_value++ = '\0';
else
continue;
/* search file in current directory and open it */
struct fat_file_struct* fd = open_file_in_dir(fs, dd, command);
if(!fd)
{
uart_puts_p(PSTR("error opening "));
uart_puts(command);
uart_putc('\n');
continue;
}
int32_t offset = strtolong(offset_value);
if(!fat_seek_file(fd, &offset, FAT_SEEK_SET))
{
uart_puts_p(PSTR("error seeking on "));
uart_puts(command);
uart_putc('\n');
fat_close_file(fd);
continue;
}
/* read text from the shell and write it to the file */
uint8_t data_len;
while(1)
{
/* give a different prompt */
uart_putc('<');
uart_putc(' ');
/* read one line of text */
data_len = read_line(buffer, sizeof(buffer));
if(!data_len)
break;
/* write text to file */
if(fat_write_file(fd, (uint8_t*) buffer, data_len) != data_len)
{
uart_puts_p(PSTR("error writing to file\n"));
break;
}
}
fat_close_file(fd);
}
else if(strncmp_P(command, PSTR("mkdir "), 6) == 0)
{
command += 6;
if(command[0] == '\0')
continue;
struct fat_dir_entry_struct dir_entry;
if(!fat_create_dir(dd, command, &dir_entry))
{
uart_puts_p(PSTR("error creating directory: "));
uart_puts(command);
uart_putc('\n');
}
}
#endif
#if SD_RAW_WRITE_BUFFERING
else if(strcmp_P(command, PSTR("sync")) == 0)
{
if(!sd_raw_sync())
uart_puts_p(PSTR("error syncing disk\n"));
}
#endif
else
{
uart_puts_p(PSTR("unknown command: "));
uart_puts(command);
uart_putc('\n');
}
}
/* close directory */
fat_close_dir(dd);
/* close file system */
fat_close(fs);
/* close partition */
partition_close(partition);
}
return 0;
}
uint8_t read_line(char* buffer, uint8_t buffer_length)
{
memset(buffer, 0, buffer_length);
uint8_t read_length = 0;
while(read_length < buffer_length - 1)
{
uint8_t c = uart_getc();
if(c == 0x08 || c == 0x7f)
{
if(read_length < 1)
continue;
--read_length;
buffer[read_length] = '\0';
uart_putc(0x08);
uart_putc(' ');
uart_putc(0x08);
continue;
}
uart_putc(c);
if(c == '\n')
{
buffer[read_length] = '\0';
break;
}
else
{
buffer[read_length] = c;
++read_length;
}
}
return read_length;
}
uint32_t strtolong(const char* str)
{
uint32_t l = 0;
while(*str >= '0' && *str <= '9')
l = l * 10 + (*str++ - '0');
return l;
}
uint8_t find_file_in_dir(struct fat_fs_struct* fs, struct fat_dir_struct* dd, const char* name, struct fat_dir_entry_struct* dir_entry)
{
while(fat_read_dir(dd, dir_entry))
{
if(strcmp(dir_entry->long_name, name) == 0)
{
fat_reset_dir(dd);
return 1;
}
}
return 0;
}
struct fat_file_struct* open_file_in_dir(struct fat_fs_struct* fs, struct fat_dir_struct* dd, const char* name)
{
struct fat_dir_entry_struct file_entry;
if(!find_file_in_dir(fs, dd, name, &file_entry))
return 0;
return fat_open_file(fs, &file_entry);
}
uint8_t print_disk_info(const struct fat_fs_struct* fs)
{
if(!fs)
return 0;
struct sd_raw_info disk_info;
if(!sd_raw_get_info(&disk_info))
return 0;
uart_puts_p(PSTR("manuf: 0x")); uart_putc_hex(disk_info.manufacturer); uart_putc('\n');
uart_puts_p(PSTR("oem: ")); uart_puts((char*) disk_info.oem); uart_putc('\n');
uart_puts_p(PSTR("prod: ")); uart_puts((char*) disk_info.product); uart_putc('\n');
uart_puts_p(PSTR("rev: ")); uart_putc_hex(disk_info.revision); uart_putc('\n');
uart_puts_p(PSTR("serial: 0x")); uart_putdw_hex(disk_info.serial); uart_putc('\n');
uart_puts_p(PSTR("date: ")); uart_putw_dec(disk_info.manufacturing_month); uart_putc('/');
uart_putw_dec(disk_info.manufacturing_year); uart_putc('\n');
uart_puts_p(PSTR("size: ")); uart_putdw_dec(disk_info.capacity / 1024 / 1024); uart_puts_p(PSTR("MB\n"));
uart_puts_p(PSTR("copy: ")); uart_putw_dec(disk_info.flag_copy); uart_putc('\n');
uart_puts_p(PSTR("wr.pr.: ")); uart_putw_dec(disk_info.flag_write_protect_temp); uart_putc('/');
uart_putw_dec(disk_info.flag_write_protect); uart_putc('\n');
uart_puts_p(PSTR("format: ")); uart_putw_dec(disk_info.format); uart_putc('\n');
uart_puts_p(PSTR("free: ")); uart_putdw_dec(fat_get_fs_free(fs)); uart_putc('/');
uart_putdw_dec(fat_get_fs_size(fs)); uart_putc('\n');
return 1;
}
#if FAT_DATETIME_SUPPORT
void get_datetime(uint16_t* year, uint8_t* month, uint8_t* day, uint8_t* hour, uint8_t* min, uint8_t* sec)
{
*year = 2007;
*month = 1;
*day = 1;
*hour = 0;
*min = 0;
*sec = 0;
}
#endif