ece312/lab_3/main.c

144 lines
3.6 KiB
C
Executable File

#include "main.h"
const char* lm35_string = "LM35 Temp: ";
const struct {
x = sizeof(lm35_string);
y = 0;
} lm35_value_pos;
#ifdef CALIBRATION
const char* diode_string = "Diode Value: ";
#else
const char* diode_string = "Diode Temp: ";
#endif
const struct {
x = sizeof(diode_string);
y = 1;
} diode_value_pos;
/** @brief Initialises general pins for use.
*
* @note Does not initialise LCD pins. That is handled by lcdlibrary
*/
void pin_init() {
/* Pin Mappings:
* PC0 -> ADC0 input for diode measurement
* PC1 -> ADC1 input for LM35
*/
// Pin Config for Diode ADC
DDRC &= ~(1 << DDRC0);
DIDR0 |= (1 << ADC0D); // Disable digital input
// Pin Config for LM35 ADC
DDRC &= ~(1 << DDRC1);
DIDR0 |= (1 << ADC1D); // Disable digital input
}
/** @brief Initializes ADC with required settings
*/
void adc_init() {
/* ADC Settings
* Use Aref as Vref
* Initially set input as GND
* Data right-adjusted
* No Interrupts
*/
// Set MUX[3:0] to 0b1111 (GND reference)
ADMUX |= (1 << MUX3) | (1 << MUX2) | (1 << MUX1) | (1 << MUX0);
// Make sure data is right adjusted
ADMUX &= ~(1 << ADLAR);
// Set the clock prescaler to 128 (slower ADC means more accurate measurements)
ADCSRA |= (1 << ADPS2) | (1 << ADPS1) (1 << ADPS0);
// Enable ADC
ADCSRA |= (1 << ADEN);
}
/** @brief Blocking function to read an ADC conversion from a selected ADC input.
*
* @note Blocks until conversion finishes, so speed of this function is dependant
* on ADC prescaler.
*/
uint16_t adc_run_conversion(uint8_t adc_selection) {
// Select ADC
ADMUX &= 0xF0 | adc_selection;
// Start conversion
ADCSRA |= (1 << ADSC);
// Wait until conversion is complete
while (ADCSRA & (1 << ADIF));
// Read out conversion value
// may not be correct
return ADC;
}
/** @brief Converts an ADC value from a measurement on an LM35 into a temperature.
*/
float lm35_convert(uint16_t adc_reading) {
return (float) (adc_reading * ADC_VREF / ADC_RESOLUTION) / LM35_SENSITIVITY;
}
/** @brief Converts and ADC value from a measurement on a diode into a temperature.
* TODO
*/
float diode_convert(uint16_t adc_reading) {
// Do some funky math here
return 0;
}
int main() {
// Initialise peripherals
pin_init();
adc_init();
// Initialise display
// NOTE: LCD uses PB0-PB6
lcd_init(LCD_DISP_ON);
// Write "base" strings to LCD
lcd_puts(lm35_string);
lcd_gotoxy(0, diode_value_pos.y); // Switch to bottom
lcd_puts(diode_string);
// Note that special compiler/linker flags have to be added to enable
// printf-ing floats
// See: https://startingelectronics.org/articles/atmel-AVR-8-bit/print-float-atmel-studio-7/
while (1) {
// Read LM35 value, and write to LCD
float lm35_temp = lm35_convert(adc_run_conversion(1));
// Convert measured value to string
char[6] lm35_temp_str;
sprintf(lm35_temp_str, "%3.1f", lm35_temp);
// Display temp on LCD
lcd_gotoxy(lm35_value_pos.x, lm35_value_pos.y);
lcd_puts((const char*) lm35_temp_str);
// Read diode value, and write to LCD
#ifdef CALIBRATION
uint16_t diode_value = adc_run_conversion(0);
char[6] diode_str;
sprintf(diode_str, "%d", diode_value);
#else
float diode_temp = diode_convert(adc_run_conversion(0));
char[6] diode_str;
sprintf(diode_str, "%3.1f", diode_temp);
#endif
// Display diode info on LCD
lcd_gotoxy(diode_value_pos.x, diode_value_pos.y);
lcd_puts((const char*) diode_str);
}
}