new-sonar/gateware/memory.py

120 lines
4.4 KiB
Python

from amaranth import *
from amaranth_soc.wishbone import *
from amaranth_soc.memory import *
from math import log2, ceil
# TODO impl select
# We sub-class wishbone.Interface here because it needs to be a bus object to be added as a window to Wishbone stuff
class ROM(Elaboratable, Interface):
def __init__(self, *, size_bytes=4096, data=None):
#self.size = len(data)
addr_width = ceil(log2(size_bytes >> 2))
self.data = Memory(width=32, depth=size_bytes >> 2, init=data)
self.r = self.data.read_port()
# Need to init Interface
Interface.__init__(self, addr_width=addr_width, data_width=32, granularity=8)
# This is effectively a "window", and it has a certain set of resources
# 12 = log2(4096)
memory_map = MemoryMap(addr_width=addr_width + 2, data_width=8)
# TODO need to unify how I deal with size
# In this case, one resource, which is out memory
memory_map.add_resource(self.data, name="rom_data", size=size_bytes)
self.memory_map = memory_map
# Connects memory port signals to wishbone interface
def elaborate(self, platform):
# Stolen from https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/
m = Module()
# Register the read port submodule.
m.submodules.r = self.r
# 'ack' signal should rest at 0.
m.d.sync += self.ack.eq( 0 )
# Simulated reads only take one cycle, but only acknowledge
# them after 'cyc' and 'stb' are asserted.
with m.If( self.cyc ):
m.d.sync += self.ack.eq( self.stb )
# Set 'dat_r' bus signal to the value in the
# requested 'data' array index.
m.d.comb += [
self.r.addr.eq( self.adr ),
self.dat_r.eq( self.r.data )
]
# End of simulated memory module.
return m
# TODO support read segmentation or whatever it's called, where you read/write certian bytes from memory
# Otherwise we can't store individual bytes, and this will wreck shit in weird ways.
class RAM(Elaboratable, Interface):
def __init__(self, *, size_bytes=4096):
addr_width = ceil(log2(size_bytes >> 2))
self.addr_width = addr_width
self.data = Memory(width=32, depth=size_bytes >> 2)
self.r = self.data.read_port()
self.w = self.data.write_port()
# Need to init Interface
Interface.__init__(self, addr_width=addr_width, data_width=32, granularity=8)
# This is effectively a "window", and it has a certain set of resources
# 12 = log2(4096)
memory_map = MemoryMap(addr_width=addr_width + 2, data_width=8)
# TODO need to unify how I deal with size
# In this case, one resource, which is out memory
memory_map.add_resource(self.data, name="ram_data", size=size_bytes)
self.memory_map = memory_map
# Connects memory port signals to wishbone interface
def elaborate(self, platform):
# Stolen from https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/
m = Module()
# Register the read port submodule.
m.submodules.r = self.r
m.submodules.w = self.w
# TODO not sure if this is the idiomatic way
self.r.en = Const(1)
# Default to not writing data
m.d.sync += self.w.en.eq(0)
# Use read data to populate un-written wishbone data for sub-32-bit reads
for i in range(4):
with m.If(self.sel.bit_select(i, 1)):
m.d.sync += self.w.data.word_select(i, 8).eq(self.dat_w.word_select(i, 8))
with m.Else():
m.d.sync += self.w.data.word_select(i, 8).eq(self.r.data.word_select(i, 8))
# 'ack' signal should rest at 0.
m.d.sync += self.ack.eq(0)
# Simulated reads only take one cycle, but only acknowledge
# them after 'cyc' and 'stb' are asserted.
with m.If( self.cyc & self.stb):
m.d.sync += self.ack.eq(1)
# Write to address if we are writing
with m.If(self.we):
m.d.sync += self.w.en.eq(1)
# Set 'dat_r' bus signal to the value in the
# requested 'data' array index.
m.d.comb += [
self.r.addr.eq( self.adr ),
self.dat_r.eq( self.r.data ),
self.w.addr.eq(self.adr),
#self.w.data.eq(self.dat_w),
]
# End of simulated memory module.
return m