304 lines
10 KiB
Python
304 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from amaranth import *
|
|
from amaranth.sim import *
|
|
from amaranth_boards import colorlight_i9
|
|
from amaranth_soc.wishbone import Interface, Arbiter, Decoder
|
|
from amaranth_soc.memory import MemoryMap
|
|
|
|
from minerva.core import Minerva
|
|
|
|
from typing import List
|
|
from argparse import ArgumentParser
|
|
|
|
class Blinky(Elaboratable):
|
|
def __init__(self):
|
|
self.count = Signal(64)
|
|
|
|
def elaborate(self, platform):
|
|
led = platform.request("led")
|
|
|
|
m = Module()
|
|
|
|
# Counter
|
|
m.d.sync += self.count.eq(self.count + 1)
|
|
with m.If(self.count >= 50000000):
|
|
m.d.sync += self.count.eq(0)
|
|
m.d.sync += led.eq(~led)
|
|
|
|
return m
|
|
|
|
# To change clock domain of a module:
|
|
# new_thing = DomainRenamer("new_clock")(MyElaboratable())
|
|
|
|
# We sub-class wishbone.Interface here because it needs to be a bus object to be added as a window to Wishbone stuff
|
|
class ROM(Elaboratable, Interface):
|
|
def __init__(self, data=None):
|
|
#self.size = len(data)
|
|
self.data = Memory(width=32, depth=(4096 >> 2), init=data)
|
|
self.r = self.data.read_port()
|
|
|
|
# Need to init Interface
|
|
Interface.__init__(self, addr_width=10, data_width=32)
|
|
|
|
# This is effectively a "window", and it has a certain set of resources
|
|
# 12 = log2(4096)
|
|
memory_map = MemoryMap(addr_width=10, data_width=32)
|
|
# TODO need to unify how I deal with size
|
|
# In this case, one resource, which is out memory
|
|
memory_map.add_resource(self.data, name="rom_data", size=(4096 >> 2))
|
|
|
|
self.memory_map = memory_map
|
|
|
|
# Connects memory port signals to wishbone interface
|
|
def elaborate(self, platform):
|
|
# Stolen from https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/
|
|
m = Module()
|
|
# Register the read port submodule.
|
|
m.submodules.r = self.r
|
|
|
|
# 'ack' signal should rest at 0.
|
|
m.d.sync += self.ack.eq( 0 )
|
|
# Simulated reads only take one cycle, but only acknowledge
|
|
# them after 'cyc' and 'stb' are asserted.
|
|
with m.If( self.cyc ):
|
|
m.d.sync += self.ack.eq( self.stb )
|
|
|
|
# Set 'dat_r' bus signal to the value in the
|
|
# requested 'data' array index.
|
|
m.d.comb += [
|
|
self.r.addr.eq( self.adr ),
|
|
self.dat_r.eq( self.r.data )
|
|
]
|
|
|
|
# End of simulated memory module.
|
|
return m
|
|
|
|
# TODO support read segmentation or whatever it's called, where you read/write certian bytes from memory
|
|
# Otherwise we can't store individual bytes, and this will wreck shit in weird ways.
|
|
class RAM(Elaboratable, Interface):
|
|
def __init__(self):
|
|
#self.size = len(data)
|
|
self.data = Memory(width=32, depth=(4096 >> 2))
|
|
self.r = self.data.read_port()
|
|
self.w = self.data.write_port()
|
|
|
|
# Need to init Interface
|
|
Interface.__init__(self, addr_width=10, data_width=32)
|
|
|
|
# This is effectively a "window", and it has a certain set of resources
|
|
# 12 = log2(4096)
|
|
memory_map = MemoryMap(addr_width=10, data_width=32)
|
|
# TODO need to unify how I deal with size
|
|
# In this case, one resource, which is out memory
|
|
memory_map.add_resource(self.data, name="ram_data", size=(4096 >> 2))
|
|
|
|
self.memory_map = memory_map
|
|
|
|
# Connects memory port signals to wishbone interface
|
|
def elaborate(self, platform):
|
|
# Stolen from https://vivonomicon.com/2020/04/14/learning-fpga-design-with-nmigen/
|
|
m = Module()
|
|
# Register the read port submodule.
|
|
m.submodules.r = self.r
|
|
m.submodules.w = self.w
|
|
|
|
# 'ack' signal should rest at 0.
|
|
m.d.sync += self.ack.eq(0)
|
|
# Simulated reads only take one cycle, but only acknowledge
|
|
# them after 'cyc' and 'stb' are asserted.
|
|
with m.If( self.cyc & self.stb):
|
|
m.d.sync += self.ack.eq(1)
|
|
|
|
# Write to address if we are writing
|
|
with m.If(self.we):
|
|
m.d.sync += self.w.en.eq(1)
|
|
|
|
# Set 'dat_r' bus signal to the value in the
|
|
# requested 'data' array index.
|
|
m.d.comb += [
|
|
self.r.addr.eq( self.adr ),
|
|
self.dat_r.eq( self.r.data ),
|
|
self.w.addr.eq(self.adr),
|
|
self.w.data.eq(self.dat_w),
|
|
]
|
|
|
|
# End of simulated memory module.
|
|
return m
|
|
|
|
class LEDPeripheral(Elaboratable, Interface):
|
|
def __init__(self, led_signal):
|
|
Interface.__init__(self, addr_width=1, data_width=32)
|
|
memory_map = MemoryMap(addr_width=1, data_width=32)
|
|
#memory_map.add_resource("my_led", name="led_peripheral", size=1)
|
|
self.memory_map = memory_map
|
|
|
|
self.led = led_signal
|
|
|
|
def elaborate(self, platform):
|
|
m = Module()
|
|
|
|
storage = Signal(1)
|
|
|
|
# Always update read values (both wishbone and the LED outpu)
|
|
m.d.comb += [
|
|
self.dat_r[0].eq(storage),
|
|
self.led.eq(storage),
|
|
]
|
|
|
|
m.d.sync += self.ack.eq(0) # default to no ack
|
|
with m.If(self.cyc & self.stb):
|
|
# single cycle ack when CYC and STB are asserted
|
|
m.d.sync += self.ack.eq(1)
|
|
|
|
# Write to our storage register if the value has changed
|
|
with m.If(self.we):
|
|
m.d.sync += storage.eq(self.dat_w[0])
|
|
|
|
return m
|
|
|
|
|
|
# TODO clean this up, generate binary here, maybe even run cargo build
|
|
def load_firmware_for_mem() -> List[int]:
|
|
with open('../firmware/fw.bin', 'rb') as f:
|
|
# Stored as little endian, LSB first??
|
|
data = f.read()
|
|
out = []
|
|
assert(len(data) % 4 == 0)
|
|
for i in range(int(len(data) / 4)):
|
|
out.append(int.from_bytes(data[i*4:i*4+4], byteorder='little'))
|
|
|
|
return out
|
|
|
|
class Core(Elaboratable):
|
|
def __init__(self, led_signal):
|
|
self.count = Signal(64)
|
|
self.cpu = Minerva(reset_address=0x01000000)
|
|
self.arbiter = Arbiter(addr_width=32, data_width=32)
|
|
self.decoder = Decoder(addr_width=32, data_width=32)
|
|
self.led_signal = led_signal
|
|
|
|
def elaborate(self, platform):
|
|
m = Module()
|
|
m.submodules.cpu = self.cpu
|
|
m.submodules.arbiter = self.arbiter
|
|
m.submodules.decoder = self.decoder
|
|
|
|
# Connect ibus and dbus together for simplicity for now
|
|
minerva_wb_features = ["cti", "bte", "err"]
|
|
self.ibus = Interface(addr_width=32, data_width=32, features=minerva_wb_features)
|
|
# Note this is a set of statements! without assigning to the comb domain, this will do nothing
|
|
m.d.comb += self.cpu.ibus.connect(self.ibus)
|
|
self.arbiter.add(self.ibus)
|
|
|
|
self.dbus = Interface(addr_width=32, data_width=32, features=minerva_wb_features)
|
|
m.d.comb += self.cpu.dbus.connect(self.dbus) # Don't use .eq, use .connect, which will appropriately assign signals
|
|
# using .eq() gave me Multiple Driven errors
|
|
self.arbiter.add(self.dbus)
|
|
|
|
# TODO do something with interrupts
|
|
# These are interrupts headed into the CPU
|
|
self.interrupts = Signal(32)
|
|
m.d.comb += [
|
|
# Used for mtime registers, which are memory-mapped (not CSR), so I would have to implement.
|
|
# If I cared.
|
|
self.cpu.timer_interrupt.eq(0),
|
|
# Ostensibly exposed to us so we can interrupt one hart (CPU in this context) from another, we don't need this.
|
|
self.cpu.software_interrupt.eq(0),
|
|
# External interrupt lines, would be for any interrupts I implemented w/ a custom interrupt controller.
|
|
# Most likely I'll map a few lines to some peripherals, won't do anything fancy
|
|
self.cpu.external_interrupt.eq(self.interrupts),
|
|
]
|
|
|
|
|
|
fw = load_firmware_for_mem()
|
|
|
|
# Hook up memory space
|
|
self.rom = ROM(fw)
|
|
m.submodules.rom = self.rom
|
|
# Problem: not sure to handle how we do byte vs word addressing properly
|
|
# So doing this shift is a bit of a hacky way to impl anything
|
|
start, _stop, _step = self.decoder.add(self.rom, addr=(0x01000000 >> 2))
|
|
print(f"ROM added at 0x{start:08x}")
|
|
|
|
self.ram = RAM()
|
|
m.submodules.ram = self.ram
|
|
start, _stop, _step = self.decoder.add(self.ram)
|
|
print(f"RAM added at 0x{start:08x}")
|
|
|
|
self.led = LEDPeripheral(self.led_signal)
|
|
m.submodules.led = self.led
|
|
start, _stop, _step = self.decoder.add(self.led)
|
|
print(f"LED added at 0x{start:08x}")
|
|
|
|
# Connect arbiter to decoder
|
|
m.d.comb += self.arbiter.bus.connect(self.decoder.bus)
|
|
|
|
# Counter
|
|
#m.d.sync += self.count.eq(self.count + 1)
|
|
#with m.If(self.count >= 50000000):
|
|
# m.d.sync += self.count.eq(0)
|
|
# m.d.sync += led.eq(~led)
|
|
|
|
return m
|
|
|
|
class SoC(Elaboratable):
|
|
def __init__(self):
|
|
pass
|
|
|
|
def elaborate(self, platform):
|
|
m = Module()
|
|
|
|
led_signal = platform.request("led")
|
|
core = Core(led_signal)
|
|
m.submodules.core = core
|
|
|
|
return m
|
|
|
|
|
|
# TODO add more harnessing
|
|
class TestDevice(Elaboratable):
|
|
def __init__(self):
|
|
pass
|
|
|
|
|
|
def elaborate(self, platform):
|
|
m = Module()
|
|
led_signal = Signal()
|
|
core = Core(led_signal)
|
|
m.submodules.core = core
|
|
|
|
return m
|
|
|
|
# TODO add structure to add regression tests
|
|
def run_sim():
|
|
dut = TestDevice()
|
|
sim = Simulator(dut)
|
|
|
|
def proc():
|
|
for i in range(10000):
|
|
yield Tick()
|
|
|
|
sim.add_clock(1e-6)
|
|
sim.add_sync_process(proc)
|
|
with sim.write_vcd('test.vcd', gtkw_file='test.gtkw'):
|
|
sim.reset()
|
|
sim.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = ArgumentParser(description="ARVP Sonar Acquisition FPGA gateware.")
|
|
args.add_argument("--build", action="store_true", help="Build bitstream.")
|
|
args.add_argument("--gen-debug-verilog", action="store_true", help="Save debug verilog.")
|
|
# TODO maybe allow an optional arg to specify an individual test to run?
|
|
args.add_argument("--test", action="store_true", help="Run RTL test suite and report results.")
|
|
args.add_argument("--save-vcd", action="store_true", help="Save VCD waveforms from test(s).")
|
|
args = args.parse_args()
|
|
|
|
if args.build:
|
|
colorlight_i9.Colorlight_i9_Platform().build(SoC(), debug_verilog=args.gen_debug_verilog)
|
|
|
|
if args.test:
|
|
# TODO pass save_vcd arg through
|
|
run_sim()
|