Moved QAM into it's own file
This commit is contained in:
parent
f22dfb0274
commit
1c87f451f3
36
main.py
36
main.py
@ -7,42 +7,13 @@ from channel import channel_sim
|
||||
|
||||
from serpar import parallelise, serialise
|
||||
|
||||
|
||||
|
||||
def qam(n, in_data):
|
||||
"""
|
||||
Modulates into 4-QAM encoding, might change that number later.
|
||||
|
||||
Parameters:
|
||||
n - number of channels to operate on
|
||||
in_data - m X n array, m symbols to run on
|
||||
|
||||
Output:
|
||||
data
|
||||
"""
|
||||
|
||||
#initialise output array
|
||||
out_data = np.ndarray((len(in_data), n), dtype=np.csingle)
|
||||
|
||||
for i in range(len(in_data)):
|
||||
for j in range(n):
|
||||
|
||||
#4-QAM is nice
|
||||
out_data[i][j] = 1 + 1j
|
||||
|
||||
# Just rotate 90 degrees for every number and you've got your encoding
|
||||
for k in range(in_data[i][j]):
|
||||
out_data[i][j] = out_data[i][j] * (1j)
|
||||
|
||||
return out_data
|
||||
import qam
|
||||
|
||||
def cyclic_prefix(n, in_data, prefix_len):
|
||||
out_data = np.ndarray((len(in_data), n + prefix_len), dtype=np.csingle)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with open('data.txt', 'r') as file:
|
||||
data = file.read()
|
||||
@ -57,11 +28,6 @@ if __name__ == '__main__':
|
||||
|
||||
rx = channel_sim(tx)
|
||||
|
||||
plt.plot(tx[0], 'r')
|
||||
plt.plot(rx[0], 'b')
|
||||
plt.show()
|
||||
|
||||
print(channel_sim(pre_modulated))
|
||||
|
||||
|
||||
|
||||
|
52
qam.py
Normal file
52
qam.py
Normal file
@ -0,0 +1,52 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.distances import euclidean
|
||||
|
||||
qam_mapping_table = {
|
||||
0 : 1 + 1j,
|
||||
1 : -1 + 1j,
|
||||
2 : -1 - 1j,
|
||||
3 : 1 - 1j
|
||||
}
|
||||
|
||||
def qam_demapping_table = { x, y for y, x in qam_mapping_table.items() }
|
||||
|
||||
def modulate(in_data):
|
||||
"""
|
||||
Modulates into 4-QAM encoding, might change that number later.
|
||||
|
||||
Parameters:
|
||||
in_data - m X n array, m symbols to run on
|
||||
|
||||
Output:
|
||||
data
|
||||
"""
|
||||
|
||||
#initialise output array
|
||||
out_data = np.ndarray((len(in_data), len(in_data[0])), dtype=np.csingle)
|
||||
|
||||
for i in range(len(in_data)):
|
||||
for j in range(len(in_data[0])):
|
||||
out_data[i][j] = qam_mapping_table[in_data[i][j]]
|
||||
|
||||
return out_data
|
||||
|
||||
def demodulate(n, in_data):
|
||||
out_data = np.ndarray((len(in_data), len(in_data[0])), dtype=np.uint8)
|
||||
|
||||
# Just pull the constellation array data out
|
||||
constellation = { x for x in qam_demapping_table.keys() }
|
||||
|
||||
for i in range(len(in_data)):
|
||||
for j in range(len(in_data[0])):
|
||||
distances = np.ndarray((len(constellation)), dtype=np.single)
|
||||
|
||||
# Here we have to map to the closest constellation point,
|
||||
# because floating point error
|
||||
for k in range(len(constellation)):
|
||||
distances[k] = euclidean(in_data[i][j], constellation[i][j])
|
||||
|
||||
# output is the index of the constellation, essentially
|
||||
# this may have to change if I want to generalise
|
||||
out_data[i][j] = np.argmin(distances)
|
||||
|
||||
return out_data
|
Loading…
Reference in New Issue
Block a user