import numpy as np channel_response = np.array([0, 0, 0, 1, 0, 0, 0]) # 15dB seems to be around the minimum for error-free transmission snr_db = 15 def sim(in_data): out_data = np.ndarray((len(in_data), len(in_data[0])), dtype=np.csingle) # noise stuff is straight copied from the DSP illustrations article for i in range(len(in_data)): convolved = np.convolve(channel_response, in_data[i], mode='same') signal_power = np.mean(abs(convolved**2)) noise_power = signal_power * 10**(-snr_db/10) noise = np.sqrt(noise_power / 2) * (np.random.randn(*convolved.shape) + 1j*np.random.randn(*convolved.shape)) out_data[i] = convolved + noise return out_data