This commit is contained in:
pkirwin 2021-03-01 21:18:38 -07:00
parent 39372354ab
commit 0ad1f62bed
2 changed files with 0 additions and 133 deletions

View File

@ -1,57 +0,0 @@
clear all;
%physical constants in MKS units
hbar = 1.054e-34;
q = 1.602e-19;
m = 9.110e-31;
%generate lattice
N = 100; %number of lattice points
n = [1:N]; %lattice points
a = 1e-10; %lattice constant
x = a * n; %x-coordinates
t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor
L = a * (N+1); %total length of consideration
%set up Hamiltonian matrix
U = 0*x; %0 potential at all x
main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix
lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix
upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix
H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix
[eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each column is an eigenvector
%"E_diag" is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal.
E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues
% return eigenvectors for the 1st and 50th eigenvalues
phi_1 = eigenvectors(:,1);
phi_50 = eigenvectors(:,50);
% find the probability densities of position for 1st and 50th eigenvectors
P_1 = phi_1 .* conj(phi_1);
P_50 = phi_50 .* conj(phi_50);
% Find first N analytic eigenvalues
E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (
% Plot the probability densities for 1st and 50th eigenvectors
figure(1); clf; h = plot(x,P_1,'kx',x,P_50,'k-');
grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]');
legend('n=1','n=50');
% Plot numerical eigenvalues
figure(2); clf; h = plot(n,E_col,'kx'); grid on;
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]');
axis([0 100 0 40]);

View File

@ -1,76 +0,0 @@
clear all;
%physical constants in MKS units
hbar = 1.054e-34;
q = 1.602e-19;
m = 9.110e-31;
epsilon_0 = 8.854e-12;
%generate lattice
N = 100; %number of lattice points
n = [1:N]; %lattice points
a = 0.1e-10; %lattice constant
r = a * n; %x-coordinates
t0 = (hbar^2)/(2*m*a^2)/q; %encapsulating factor
L = a * (N+1); %total length of consideration
%set up Hamiltonian matrix
U = -q^2./(4*pi*epsilon_0.*r) * (1/q); %potential at r in [eV]
main_diag = diag(2*t0*ones(1,N)+U,0); %create main diagonal matrix
lower_diag = diag(-t0*ones(1,N-1),-1); %create lower diagonal matrix
upper_diag = diag(-t0*ones(1,N-1),+1); %create upper diagonal matrix
H = main_diag + lower_diag + upper_diag; %sum to get Hamiltonian matrix
[eigenvectors,E_diag] = eig(H); %"eigenvectors" is a matrix wherein each column is an eigenvector
%"E_diag" is a diagonal matrix where the
%corresponding eigenvalues are on the
%diagonal.
E_col = diag(E_diag); %folds E_diag into a column vector of eigenvalues
% return eigenvectors for the 1st and 50th eigenvalues
phi_1 = eigenvectors(:,1);
phi_2 = eigenvectors(:,2);
% find the probability densities of position for 1st and 50th eigenvectors
P_1 = phi_1 .* conj(phi_1);
P_2 = phi_2 .* conj(phi_2);
% Find first N analytic eigenvalues
E_col_analytic = (1/q) * (hbar^2 * pi^2 * n.*n) / (2*m*L^2);
% Plot the probability densities for 1st and 2nd eigenvectors
figure(1); clf; h = plot(r,P_1,'k-');
grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]');
yticks([0.02 0.04 0.06 0.08 0.10 0.12]);
legend('n=1');
axis([0 1e-9 0 0.12]);
figure(2); clf; h = plot(r,P_2,'k-');
grid on; set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('POSITION [m]'); ylabel('PROBABILITY DENSITY [1/m]');
yticks([0.02 0.04 0.06 0.08 0.10 0.12]);
legend('n=2');
axis([0 1e-9 0 0.04]);
%{
% Plot numerical eigenvalues
figure(2); clf; h = plot(n,E_col,'kx'); grid on;
set(h,'linewidth',[2.0]); set(gca,'Fontsize',[18]);
xlabel('EIGENVALUE NUMBER'); ylabel('ENERGY [eV]');
axis([0 100 0 40]);
% Add analytic eigenvalues to above plot
hold on;
plot(n,E_col_analytic,'k-');
legend({'Numerical','Analytical'},'Location','northwest');
%}