fix q4c image
This commit is contained in:
parent
cf58a89590
commit
7646bc9d71
58
PS1/doc.tex
58
PS1/doc.tex
@ -541,7 +541,7 @@ ylabel('Current [A]');
|
||||
$\mu_1 = 0$ eV. Since $\mu_1 = \mu - qV_S$ and $\mu = 0$ eV, $V_S = 0$ V.
|
||||
For $f_2(E + U)$ the step point occurs at $E = \mu_2 - U = -0.25$ eV. Since $U = -0.25$ eV, it follows that
|
||||
$\mu_2 = -0.5$ eV. Since $\mu_1 = \mu - qV_D$ and $\mu = 0$ eV, $V_D = 0.5$ V.
|
||||
|
||||
|
||||
\subsubsection*{(ii)}
|
||||
|
||||
For $f_1(E)$ the step point occurs at $E = \mu_1 = 0.25$ eV. Since $\mu_1 = \mu - qV_S$ and $\mu = 0$ eV, $V_S = -0.25$ V.
|
||||
@ -549,34 +549,70 @@ ylabel('Current [A]');
|
||||
This assumes $U = 0$ eV.
|
||||
|
||||
\subsection*{(c)}
|
||||
|
||||
|
||||
\subsubsection*{(i)}
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{q4c.jpg}
|
||||
\caption{}
|
||||
\includegraphics[width=0.7\textwidth, angle=90, origin=c]{q4c.jpg}
|
||||
\caption{Visualisation of energy levels.}
|
||||
\label{fig:q4c}
|
||||
\end{figure}
|
||||
|
||||
\subsubsection*{(ii)}
|
||||
Starting with equation 2 in the assignment we get:
|
||||
|
||||
\begin{equation*}
|
||||
I = \frac{q}{\hbar} \cdot \frac{0.005^2}{0.01} \cdot \int_{-0.1}^{0.2} [1 - 0] \cdot 10^4 dE \\
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
I = \frac{q}{\hbar} \cdot \frac{0.005^2}{0.01} \cdot [10^4 \cdot 0.2 - 10^4 \cdot -0.1]
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
I = 1.8mA
|
||||
\end{equation*}
|
||||
|
||||
(Note that 1)
|
||||
|
||||
|
||||
\subsubsection*{(iii)}
|
||||
|
||||
|
||||
|
||||
\subsection*{(d)}
|
||||
|
||||
Using equation (5) in the assignment and plugging in the given values we obtain:
|
||||
|
||||
\begin{equation*}
|
||||
U = -q[\frac{C_SV_S+C_GV_G+C_DV_D}{C_E}] + \frac{q^2(N-N_0)}{C_E}
|
||||
U = \alpha_SV_S + \alpha_GV_G + \alpha_DV_D + U_0(N - N_0)\:\:[eV]
|
||||
U = 0*0 + 0.5*0\:eV + 0.5*0.6\:eV + 0.25\:eV*(0.325 - 0)\:\:[eV]
|
||||
U = 0.38125 eV$ $
|
||||
\begin{aligned}
|
||||
U = -q[\frac{C_SV_S+C_GV_G+C_DV_D}{C_E}] + \frac{q^2(N-N_0)}{C_E} \\
|
||||
U = -\alpha_SV_S - \alpha_GV_G - \alpha_DV_D + U_0(N - N_0)\:\:[eV] \\
|
||||
U = -0*0 - 0.5*0\:eV - 0.5*0.6\:eV + 0.25\:eV*(0.325 - 0)\:\:[eV] \\
|
||||
U = -0.21875\:eV
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
Then, starting with Equation \ref{eq:N_new} and plugging in $D(E-U) = \delta(E - \varepsilon)$, we obtain
|
||||
|
||||
\begin{equation*}
|
||||
N = \frac{\gamma_1f_1(\varepsilon + U) + \gamma_2f_2(\varepsilon + U)}{\gamma_1 + \gamma_2}
|
||||
\end{equation*}
|
||||
Recalling that the expressions for the contact Fermi functions are (with $\mu = 0$ eV):
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
f_1(\varepsilon + U) = \frac{1}{1 + e^{frac{\varepsilon + U + qV_S}{k_BT}}} = \frac{1}{1 + e^{frac{0.2 - 0.21875 + 0}{0.025}}} = 0.679 \\
|
||||
f_2(\varepsilon + U) = \frac{1}{1 + e^{frac{\varepsilon + U + qV_D}{k_BT}}} = \frac{1}{1 + e^{frac{0.2 - 0.21875 + 0.6}{0.025}}} \simeq 0
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
Then, solving for $\gamma_2$:
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\gamma_2 = \gamma_2\frac{N - f_1(\varepsilon + U)}{f_2(\varepsilon + U) - N} = 5.45 \times 10^-3 \: eV
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
Then, starting with Equation \ref{eq:N_old} and plugging in $D(E-U) = \delta(E - U - \varepsilon)$, we obtain
|
||||
|
||||
|
||||
|
||||
\subsection*{(e)}
|
||||
\subsection*{(f)}
|
||||
\subsection*{(g)}
|
||||
|
BIN
PS1/q4c.jpg
BIN
PS1/q4c.jpg
Binary file not shown.
Before Width: | Height: | Size: 512 KiB After Width: | Height: | Size: 345 KiB |
Loading…
Reference in New Issue
Block a user