save changes
This commit is contained in:
parent
feca86b40b
commit
9c17fcd819
32
PS1/q1b.m
32
PS1/q1b.m
@ -3,18 +3,18 @@ clear all;
|
||||
%% Constants
|
||||
|
||||
% Physical constants
|
||||
hbar = 1.052e-34;
|
||||
q = 1.602e-19;
|
||||
epsilon_0 = 8.854e-12;
|
||||
epsilon_r = 4;
|
||||
mstar = 0.25 * 9.11e-31;
|
||||
%hbar = 1.052e-34;
|
||||
%q = 1.602e-19;
|
||||
%epsilon_0 = 8.854e-12;
|
||||
%epsilon_r = 4;
|
||||
%mstar = 0.25 * 9.11e-31;
|
||||
|
||||
% Single-charge coupling energy (eV)
|
||||
U_0 = 0.25;
|
||||
% (eV)
|
||||
kBT = 0.025;
|
||||
% Contact coupling coefficients (eV)
|
||||
gamma_1 = 0.0005;
|
||||
gamma_1 = 0.005;
|
||||
gamma_2 = gamma_1;
|
||||
gamma_sum = gamma_1 + gamma_2;
|
||||
% Capacitive gate coefficient
|
||||
@ -35,13 +35,11 @@ cal_E = 0.2;
|
||||
|
||||
% Lorentzian density of states, normalized so the integral is 1
|
||||
D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2);
|
||||
|
||||
D = D ./ (dE*sum(D));
|
||||
|
||||
% Reference no. of electrons in channel
|
||||
N_0 = 0;
|
||||
|
||||
fermi(-0.25, -0.2, kb_T)
|
||||
|
||||
voltages = linspace(0, 1, 101);
|
||||
|
||||
% Terminal Voltages
|
||||
@ -52,24 +50,28 @@ for n = 1:length(voltages)
|
||||
% Set varying drain voltage
|
||||
V_D = voltages(n);
|
||||
|
||||
% Shifted energy levels of the contacts
|
||||
mu_1 = mu - V_S;
|
||||
mu_2 = mu - V_D;
|
||||
|
||||
% Laplace potential, does not change as solution is found (eV)
|
||||
U_L = -q * ((C_S*V_S + C_G*V_G + C_D*V_D) / C_E);
|
||||
U_L = - (a_G*V_G - a_D*V_D - a_S*V_S);
|
||||
|
||||
% Poisson potential must change, assume 0 initially (eV)
|
||||
U_P = 0;
|
||||
|
||||
% Assume large rate of change
|
||||
dU_P = 1;
|
||||
|
||||
% Run until we get close enough to the answer
|
||||
while dU_P > 1e-6
|
||||
% source Fermi function
|
||||
f_1 = 1 / (1 + exp((E + U_L + U_P - mu_1) / kBT));
|
||||
f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT));
|
||||
% drain Fermi function
|
||||
f_2 = 1 / (1 + exp((E + U_L + U_P - mu_2) / kBT));
|
||||
f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT));
|
||||
|
||||
% Update channel electrons against potential
|
||||
N(n) = dE * sum( ((gamma_1/gamma_sum) .* f1 + (gamma_2/gamma_sum) .* f2) .* D);
|
||||
N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D);
|
||||
|
||||
% Re-update Poisson portion of potential
|
||||
tmpU_P = U_0 * ( N(n) - N_0);
|
||||
@ -80,7 +82,9 @@ for n = 1:length(voltages)
|
||||
% U_P = U_P + 0.1 * (tmpU_P - U_P)
|
||||
end
|
||||
|
||||
I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f1-f2).*D);
|
||||
% Calculate current based on solved potential.
|
||||
% Note: f1 is dependent on changes in U but has been updated prior in the loop
|
||||
I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D);
|
||||
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user