ECE_456_Reports/PS1/q1b.m
2021-02-06 15:36:40 -07:00

108 lines
2.4 KiB
Matlab

clear all;
%% Constants
% Physical constants
%hbar = 1.052e-34;
%q = 1.602e-19;
%epsilon_0 = 8.854e-12;
%epsilon_r = 4;
%mstar = 0.25 * 9.11e-31;
% Single-charge coupling energy (eV)
U_0 = 0.25;
% (eV)
kBT = 0.025;
% Contact coupling coefficients (eV)
gamma_1 = 0.005;
gamma_2 = gamma_1;
gamma_sum = gamma_1 + gamma_2;
% Capacitive gate coefficient
a_G = 0.5;
% Capacitive drain coefficient
a_D = 0.5;
a_S = 1 - a_G - a_D;
% Central energy level
mu = 0;
% Energy grid, from -1eV to 1eV
NE = 501;
E = linspace(-1, 1, NE);
dE = E(2) - E(1);
% TODO name this better
cal_E = 0.2;
% Lorentzian density of states, normalized so the integral is 1
D = (gamma_sum / (2*pi)) ./ ( (E-cal_E).^2 + (gamma_sum/2).^2);
D = D ./ (dE*sum(D));
% Reference no. of electrons in channel
N_0 = 0;
voltages = linspace(0, 1, 101);
% Terminal Voltages
V_G = 0;
V_S = 0;
for n = 1:length(voltages)
% Set varying drain voltage
V_D = voltages(n);
% Shifted energy levels of the contacts
mu_1 = mu - V_S;
mu_2 = mu - V_D;
% Laplace potential, does not change as solution is found (eV)
U_L = - (a_G*V_G - a_D*V_D - a_S*V_S);
% Poisson potential must change, assume 0 initially (eV)
U_P = 0;
% Assume large rate of change
dU_P = 1;
% Run until we get close enough to the answer
while dU_P > 1e-6
% source Fermi function
f_1 = 1 ./ (1 + exp((E + U_L + U_P - mu_1) ./ kBT));
% drain Fermi function
f_2 = 1 ./ (1 + exp((E + U_L + U_P - mu_2) ./ kBT));
% Update channel electrons against potential
N(n) = dE * sum( ((gamma_1/gamma_sum) .* f_1 + (gamma_2/gamma_sum) .* f_2) .* D);
% Re-update Poisson portion of potential
tmpU_P = U_0 * ( N(n) - N_0);
dU_P = abs(U_P - tmpU_P);
% Unsure why U_P is updated incrementally, perhaps to avoid oscillations?
U_P = tmpU_P;
% U_P = U_P + 0.1 * (tmpU_P - U_P)
end
% Calculate current based on solved potential.
% Note: f1 is dependent on changes in U but has been updated prior in the loop
I(n) = q * (q/hbar) * (gamma_1 * gamma_1 / gamma_sum) * dE * sum((f_1-f_2).*D);
end
%%Plotting commands
figure(1);
h = plot(voltages, N,'k');
grid on;
set(h,'linewidth',[2.0]);
set(gca,'Fontsize',[18]);
xlabel('Drain voltage [V]');
ylabel('Number of electrons');
figure(2);
h = plot(voltages, I,'k');
grid on;
set(h,'linewidth',[2.0]);
set(gca,'Fontsize',[18]);
xlabel('Drain voltage [V]');
ylabel('Current [A]');