ECE_456_Reports/PS3/doc.tex
2021-03-31 15:30:15 -06:00

314 lines
11 KiB
TeX

\documentclass{article}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{setspace}
\usepackage{listings}
\usepackage{color}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{float}
\usepackage[justification=centering]{caption}
\usepackage{subcaption}
\usepackage[margin=0.75in]{geometry}
\usepackage[parfill]{parskip}
\usepackage{fancyhdr}
\usepackage{titlesec}
\usepackage{lipsum}
\usepackage{enumitem}
\usepackage{cancel}
\usepackage{siunitx}
\usepackage{adjustbox}
\titleformat{\subsection}[runin]{\normalfont \large \bfseries}
{\thesubsection}{1em}{}
\captionsetup[figure]{width=0.75\textwidth,labelfont=normalfont,font=it,labelsep=period}
\DeclareMathOperator*{\sinc}{sinc}
\DeclareMathOperator*{\rect}{rect}
\renewcommand{\thesubsection}{\indent(\alph{subsection})}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
\definecolor{mylilas}{RGB}{170,55,241}
\lstset{language=Matlab,%
%basicstyle=\color{red},
breaklines=true,%
morekeywords={matlab2tikz},
keywordstyle=\color{blue},%
morekeywords=[2]{1}, keywordstyle=[2]{\color{black}},
identifierstyle=\color{black},%
stringstyle=\color{mylilas},
commentstyle=\color{mygreen},%
showstringspaces=false,%without this there will be a symbol in the places where there is a space
numbers=left,%
numberstyle={\tiny \color{black}},% size of th_sume numbers
numbersep=9pt, % this defines how far the numbers are from the text
emph=[1]{for,end,break},emphstyle=[1]\color{red}, %some words to emphasise
%emph=[2]{word1,word2}, emphstyle=[2]{style},
xleftmargin=2em
}
%\lstset{basicstyle=\small,
% keywordstyle=\color{mauve},
% identifierstyle=\color{dkgreen},
% stringstyle=\color{gray},
% numbers=left,
% xleftmargin=5em
% }
\newcommand{\angstrom}{\textup{\AA}}
\title{ECE 456 - Problem Set 3 (Part 1)}
\date{2021-03-31}
\author{David Lenfesty \\ lenfesty@ualberta.ca
\and Phillip Kirwin \\ pkirwin@ualberta.ca}
\pagestyle{fancy}
\fancyhead[L]{\textbf{ECE 456} - Problem Set 3 (Part 1)}
\fancyhead[R]{David Lenfesty and Phillip Kirwin}
\fancyfoot[C]{Page \thepage}
\renewcommand{\headrulewidth}{1pt}
\renewcommand{\footrulewidth}{1pt}
\begin{document}
\doublespacing
\maketitle
\thispagestyle{empty}
\singlespacing
\newpage
\section*{Problem 1}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %1a
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1bi
The matrix equation is
\begin{equation*}
[\hat{H}]\left\{\phi\right\} = E \left\{\phi\right\},
\end{equation*}
where \([\hat{H}]\) is an \(N\)-by-\(N\) matrix with \([\hat{H}]_{nm} = 0\) except for the following elements:
\begin{align*}
&[\hat{H}]_{nn} = 2t_0 + U_n \\
&[\hat{H}]_{n,n \pm 1} = -t_0 \\
&[\hat{H}]_{0,N} = [\hat{H}]_{N,0} = -t_0,
\end{align*}
with \(t_0 = \hbar^2/(2ma^2)\) and \(U_n = U(na)\). The \(N\)-vector \(\left\{\phi\right\}\) has elements \(\phi_n\) which each represent
the value of the eigenvector at the point \(na = x_n\).
\item %1bii
The expression of the wave function \( \phi (x) \) as a sum of basis functions is as below:
\begin{equation*}
\phi (x) = \sum _{n = 1} ^{N} \phi _n u_n(x)
\end{equation*}
The derived matrix equation:
\begin{equation*}
[\hat{H}] _u \{ \phi \} = [S]_u \{ \phi \}
\end{equation*}
Where \( [\hat{H}]_u \) is a matrix with the elements:
\begin{equation*}
H_{nm} = \int u _n ^* (x) \hat{H} u_m(x) dx
\end{equation*}
and \( [S]_u \) is a matrix with the elements:
\begin{equation*}
S_{nm} = \int u _n ^* (x) u_m(x) dx
\end{equation*}
\([\hat{H}]_u\) and \([S]_u\) are both of size \(N\)-by-\(N\). The elements
of \(\left\{\phi\right\}\), \(\phi_n\), are the expansion coefficients of \(\phi(x)\).
\end{enumerate}
\item %1b
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %1bi
code:
\begin{lstlisting}
%constants
E1 = -13.6;
R = 0.074;
a0 = 0.0529;
%matrix elements
R0 = R/a0;
a = 2*E1*(1-(1+R0)*exp(-2*R0))/R0;
b = 2*E1*(1+R0)*exp(-R0);
s = exp(-R0)*(1+R0+(R0^2/3));
%matrices
H_u = [E1 + a, E1*s+b; E1*s+b, E1 + a];
S_u = [1, s; s, 1];
%find eigenvalues and eigenvectors
[vectors,energies] = eig(inv(S_u)*H_u);
\end{lstlisting}
The bonding and antibonding eigenenergies are \(\boxed{\SI{-32.2567}{eV}}\) and \(\boxed{\SI{-15.5978}{eV}}\) respectively.
\item %1bii
Neglecting normalization, we have the following expressions for \(\phi_B(z)\) and \(\phi_A(z)\):
\begin{align*}
\phi_B(z) = u_L(z) + u_R(z) \\
\phi_A(z) = u_L(z) - u_R(z).
\end{align*}
We obtain the following plot:
\begin{minipage}[t]{\linewidth}
\centering
\adjustbox{valign=t}{
\includegraphics[width=0.5\textwidth]{q1bii.png}
}
\captionof{figure}{non-normalized probability densities for bonding and antibonding solutions.}
\end{minipage}
\end{enumerate}
\end{enumerate}
\newpage
\section*{Problem 2}
\begin{enumerate}[align=left,leftmargin=*,labelsep=1em,label=\bfseries(\alph*)]
\item %2a
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %2ai
\begin{minipage}[t]{\linewidth}
\centering
\adjustbox{valign=t}{
\includegraphics[width=0.5\textwidth]{q2ai.png}
}
% TODO still don't like this caption
\captionof{figure}{Energy vs. wave vector relationship (note: not discretized to account for N)}
\end{minipage}
\item %2aii
Energy values from \( -2 \) eV to \(2\) eV are allowed.
\item %2aiii
The vector \( \{ \phi \} \), which is of length \( N \), and has elements \( n \) is:
\begin{equation*}
\{ \phi \} = C e ^{ i k \cdot n a }
\end{equation*}
The corresponding wave function is:
\begin{equation*}
\phi (x) = \sum _ {n = 1} ^ N C e ^ { i k \cdot n a } u_n (x)
\end{equation*}
There is one wave function and thus one energy level for each value of \( k \).
This means that there is one electronic state per \( k \).
\end{enumerate}
\item %2b
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %2bi
\begin{align*}
\left\{\phi\right\} = \begin{bmatrix}
C_Ae^{ika} \\
C_Be^{ika} \\
C_Ae^{ik2a} \\
C_Be^{ik2a} \\
\vdots \\
C_Ae^{ikNa} \\
C_Ae^{ikNa}
\end{bmatrix}
\end{align*}
\item %2bii
\begin{equation*}
\phi(x) = \sum_{n=1}^{N} C_Ae^{ikna} u_{nA}(x) + C_Be^{ikna} u_{nB}(x)
\end{equation*}
\item %2biii
\([h(k)]\) is of size 2-by-2. Thus there will be two values of \(E(k)\) for a fixed \(k\).
This also means there are two \(\phi(x)\) for each \(k\).
\end{enumerate}
\item %2c
\begin{enumerate}[align=left,leftmargin=*,labelsep=0em,label=(\roman*)]
\item %2ci
\begin{align*}
\phi _2 + 2 \phi _3 + \phi _4 &= E \phi_1 \\
\phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\
2 \phi _1 + \phi _2 + \phi _4 &= E \phi_3 \\
\phi _1 + 2 \phi _2 + \phi _3 &= E \phi_4 \\
\end{align*}
\item %2cii
\begin{align*}
\phi _2 + 2 \phi _3 + \phi _0 &= E \phi_1 \\
\phi _1 + \phi _3 + 2 \phi _4 &= E \phi_2 \\
2 \phi _5 + \phi _2 + \phi _4 &= E \phi_3 \\
\phi _5 + 2 \phi _6 + \phi _3 &= E \phi_4 \\
\end{align*}
\item %2ciii
A generalized form of the $n$th equation is:
\begin{equation*}
E \phi_n = \phi_{n-1} + \phi_{n+1} + 2 \phi_{n+2}
\end{equation*}
\item %2civ
\begin{align}
E C e ^{ikna} &= Ce ^ {ik (n + 1)a} + Ce^{ik (n - 1)a} + 2 Ce^{ik (n + 2)a} \nonumber \\
E &= e^{ika} + e^{-ika} + 2 e^{2ika} \nonumber \\
E(k) &= 2 e^{2ika} + 2\cos(ka) \label{eq:e_k}
\end{align}
\item %2cv
Imposing the repeating boundary conditions \( \phi _{n + 4} = \phi _{n} \), We obtain the following relationship:
\begin{align*}
Ce^{ikna} &= Ce^{ik(n+4)a} \\
1 &= e^{i4ka}
\end{align*}
For this to hold, \(4ka\) must be some multiple of \(2 \pi \), and this mean \( k = \frac{\pi}{2a} \cdot integer \).
\item %2cvi
Using the E-k relationship from equation \ref{eq:e_k},
we know that \( k \) must always be real, so the \( 2\cos(ka) \) portion of the E-k relationship must be
real. As well, if we substitute in the equation for \( k \) we obtained in part \nolinebreak (v), we get the following (partial) expression:
\begin{equation*}
2e^{i2ka} = 2 e^{i\pi \cdot integer}
\end{equation*}
Which we know will always be real (with a value of \( \pm 2 \)).
\item %2cvii
Since \(e^{2\pi n} = 1\), we have:
\begin{align*}
\phi_n(k+\frac{2\pi}{a}) &= Ce^{i(k+\frac{2\pi}{a} \cdot nA} = Ce^{i(k \cdot nA} \\
\phi_n(k+\frac{2\pi}{a}) &= \phi_n(k).
\end{align*}
Therefore wavefunctions for which \(k\) is separated by \(\frac{2\pi}{a}\) are equivalent, and we
only need consider the range \(k \in [-\frac{\pi}{a}, \frac{\pi}{a}]\).
\end{enumerate}
\end{enumerate}
\end{document}