ECE_456_Reports/PS1/q1b.m
2021-02-06 15:05:22 -07:00

75 lines
1.3 KiB
Matlab

clear all;
%% Constants
% Physical constants
hbar = 1.052e-34;
q = 1.602e-19;
epsilon_0 = 8.854e-12;
epsilon_r = 4;
mstar = 0.25 * 9.11e-31;
% Single-charge coupling energy (eV)
U_0 = 0.25;
% (eV)
kb_T = 0.025;
% Contact coupling coefficients (eV)
gamma_1 = 0.0005;
gamma_2 = gamma_1;
% Energy level
E = 0.2;
% Capacitive gate coefficient
a_G = 0.5;
% Capacitive drain coefficient
a_D = 0.5;
a_S = 1 - a_G - a_D;
% Central energy level
mu = 0;
% Energy grid, from -1eV to 1eV
NE = 501;
E = linspace(-1, 1, NE);
dE = E(2) - E(1);
% Reference no. of electrons in channel
N_0 = 0;
fermi(-0.25, -0.2, kb_T)
voltages = linspace(0, 1, 101);
% Terminal Voltages
V_G = 0;
V_S = 0;
for n = 1:length(voltages)
% Set varying drain voltage
V_D = voltages(n);
mu_1 = mu - V_S;
mu_2 = mu - V_D;
% Laplace potential, does not change as solution is found (eV)
U_L = -q * ((C_S*V_S + C_G*V_G + C_D*V_D) / C_E);
% Poisson potential must change, assume 0 initially (eV)
U_P = 0;
dU_P = 1;
while dU_P > 1e-6
% source Fermi function
f_1 = 1 / (1 + exp((E + U_L + U_P - mu_1) / kb_T));
% drain Fermi function
f_2 = 1 / (1 + exp((E + U_L + U_P - mu_2) / kb_T));
N(n) = dE * sum( )
tmpU_P = U_0 *
end
end
%%Plotting commands